Abstract:
A touch display device includes a display area and a non-display area and further includes a touch electrode layer; wherein a plurality of sensing electrodes is configured in the electrode layer; wherein each sensing electrode extends from the display area to the non-display area and is coupled to a driver chip via a connection structure; wherein the connection structure locates in the non-display area.
Abstract:
A power supply module includes a source driver power supply circuit, a gate driver power supply circuit, a first capacitor group, a second capacitor group and a switch module. The source driver power supply circuit and the gate driver power supply circuit are utilized for driving a source driver and a gate driver of a display device, respectively. The first capacitor group includes at least one first storage capacitor for storing electric charges for driving source driving signals, and at least one first flying capacitor. The second capacitor group includes at least one second storage capacitor for storing electric charges for driving gate driving signals, and at least one second flying capacitor. The switch module is utilized for switching the first capacitor group to be used for the gate driver power supply circuit or switching the second capacitor group to be used for the source driver power supply circuit.
Abstract:
A touch display device includes a display area and a non-display area and further includes a touch electrode layer; wherein a plurality of sensing electrodes is configured in the electrode layer; wherein each sensing electrode extends from the display area to the non-display area and is coupled to a driver chip via a connection structure; wherein the connection structure locates in the non-display area.
Abstract:
The present invention relates to a transmission interface. A display device comprises a driving circuit and a transmission interface. The transmission method of the transmission interface is that a first input is used for receiving a first data string; a second input is used for receiving a second data string; and the processing unit receives the first and second data strings. The first data string has a first identification bit and a plurality of first information bits. The second data string has a plurality of second information bits. The processing unit identifies either to write a plurality of parameters or a plurality of data to a storage circuit or to read the stored content from the storage circuit according to the first identification bit and the plurality of first information bits. The processing circuit further writes or reads the storage circuit according to the plurality of second information bits.
Abstract:
A driving circuit for a display includes a logic unit and a memory array coupled to the logic unit for turning on a plurality of memory cells corresponding to the word-line according to a word-line scanning signal to refresh the plurality of memory cells corresponding to the word-line; wherein the memory array has a first number of bit-lines and a second number of word-lines, wherein the driving circuit is used for driving a display panel having a third number of data-lines and a fourth number of scan-lines, and a product of the first number and the second number is equal to a product of the third number and the fourth number.
Abstract:
A gate driving circuit for providing a scan signal to a LCD panel is disclosed. The gate driving circuit includes a positive level shifter, a capacitive coupling level shifter, a P-type transistor and an N-type transistor. The positive level shifter shifts up a gate control signal to generate a first control signal. The capacitive coupling level shifter shifts up and down the first control signal to generate positive and negative control signals. The P-type transistor P-type transistor receives the negative control signal and a negative power voltage. The N-type transistor receives the negative control signal and a negative power voltage. An absolute value of a voltage difference between the positive power voltage and the positive control signal and an absolute value of a voltage difference between the negative power voltage and the negative control signal are less than a medium voltage device endurance limit.
Abstract:
A gate driving circuit for providing a scan signal to a LCD panel is disclosed. The gate driving circuit includes at least one positive level shifter, at least one negative level shifter, a pair of P-type transistor and an N-type transistor. The positive level shifter is utilized for shifting up agate control signal to generate a positive control signal. The negative level shifter is utilized for shifting down the gate control signal to generate a negative control signal. The pair of transistors is utilized for outputting a positive power voltage or a negative power voltage as the scan signal according to the positive control signal and the negative control signal. The positive power voltage minus the positive control signal is less than six volts. The negative control signal minus the negative power voltage is less than six volts.
Abstract:
A gate driving circuit for providing a scan signal to a LCD panel is disclosed. The gate driving circuit includes at least one positive level shifter, at least one negative level shifter, a pair of P-type transistor and an N-type transistor. The positive level shifter is utilized for shifting up agate control signal to generate a positive control signal. The negative level shifter is utilized for shifting down the gate control signal to generate a negative control signal. The pair of transistors is utilized for outputting a positive power voltage or a negative power voltage as the scan signal according to the positive control signal and the negative control signal. The positive power voltage minus the positive control signal is less than six volts. The negative control signal minus the negative power voltage is less than six volts.
Abstract:
A power supply module includes a source driver power supply circuit, a gate driver power supply circuit, a first capacitor group, a second capacitor group and a switch module. The source driver power supply circuit and the gate driver power supply circuit are utilized for driving a source driver and a gate driver of a display device, respectively. The first capacitor group includes at least one first storage capacitor for storing electric charges for driving source driving signals, and at least one first flying capacitor. The second capacitor group includes at least one second storage capacitor for storing electric charges for driving gate driving signals, and at least one second flying capacitor. The switch module is utilized for switching the first capacitor group to be used for the gate driver power supply circuit or switching the second capacitor group to be used for the source driver power supply circuit.
Abstract:
A driving circuit for a display includes a logic unit and a memory array coupled to the logic unit for turning on a plurality of memory cells corresponding to the word-line according to a word-line scanning signal to refresh the plurality of memory cells corresponding to the word-line; wherein the memory array has a first number of bit-lines and a second number of word-lines, wherein the driving circuit is used for driving a display panel having a third number of data-lines and a fourth number of scan-lines, and a product of the first number and the second number is equal to a product of the third number and the fourth number.