Abstract:
An implant and a process for preparing such an implant are disclosed. The implant includes a porous layer including collagen, a non-porous layer including a collagenic constituent, and a reinforcement component. The non-porous layer is joined to the porous layer and the reinforcement member is embedded into the non-porous layer. The porous layer has a three dimensional density ranging from about 20 mg collagen/cm3 to about 200 mg collagen/cm3.
Abstract translation:公开了一种植入物和用于制备这种植入物的方法。 植入物包括包括胶原的多孔层,包括胶原成分的无孔层和增强组分。 无孔层与多孔层接合,加强构件嵌入到无孔层中。 多孔层具有约20mg胶原/ cm 3至约200mg胶原/ cm 3的三维密度。
Abstract:
The present disclosure relates to compounds and medical devices activated with a solvophobic material functionalized with a first reactive member and methods of making such compounds and devices.
Abstract:
A bioadherent substrate includes a medical gel or medical gel precursor having a plurality of reactive members of a specific binding pair attached on or adapted to be attached to a surface of the medical gel, said reactive members being capable of forming covalent bonds with a plurality of complementary reactive members of the specific binding pair via a reaction selected from a Huisgen cycloaddition reaction, a Diels-Alder reaction and a thiol-ene reaction. A method for adhering a medical gel to biological tissue includes providing a medical gel or a medical gel precursor having a plurality of reactive members of a specific binding pair attached on or adapted to be attached to a surface of the medical gel and providing tissue with a plurality of complementary reactive members of the specific binding pair, wherein upon contact of the reactive members on the medical gel with the complimentary reactive members on the tissue, covalent bonds are formed between the reactive members and the complementary reactive members, thus adhering the medical gel to the tissue.
Abstract:
A method for bonding a polymeric medical device to tissue is provided which includes providing a polymeric medical device having a plurality of reactive members of a specific binding pair attached on a surface of the medical device, and providing tissue with a plurality of complementary reactive members of the specific binding pair, wherein upon contact of the reactive members on the surface of the medical device with the complimentary reactive members on the tissue, covalent bonds are formed between the reactive members and the complementary reactive members, thus adhering the device to the tissue. A kit is provided including a polymeric medical device such as a patch or mesh having a plurality of reactive members of a specific binding pair attached to a surface of the device and an applicator containing a solution or suspension of complementary reactive members of the specific binding pair, the complementary reactive members having a functionality that will adhere them to biological tissue upon contact, said applicator adapted to deliver the solution or suspension to biological tissue.