Abstract:
The invention provides novel articles of composite materials having hollow interior channels or passageways, or otherwise being hollowed out, and formulations and methods for their manufacture and uses. These hollow core objects are suitable for a variety of applications in construction, pavements and landscaping, and infrastructure.
Abstract:
The invention provides a curing system that is useful for curing materials that consume carbon dioxide as a reagent. The system has a curing chamber that contains the material to be cured and a gas that contains carbon dioxide. The system includes apparatus that can deliver carbon dioxide to displace ambient air upon loading the system, that can provide carbon dioxide as it is needed and as it is consumed, that can control carbon dioxide concentration, temperature and humidity in the curing chamber during the curing cycle and that can record and display to a user the variables that occur during the curing process. A method of curing a material which requires CO2 as a curing reagent is also described.
Abstract:
Apparatus and methods for improving the curing process of materials that cure under reaction with CO2 and that do not cure in the presence of water alone are described, and examples are given.
Abstract:
The invention provides novel, microstructured clinker and cement materials that are characterized by superior grindability and reactivity. The disclosed clinker and cement materials are based on carbonatable calcium silicate and can be made from widely available, low cost raw materials via a process suitable for large-scale production. The method of the invention is flexible in equipment and processing requirements and is readily adaptable to manufacturing facilities of conventional Portland cement.
Abstract:
The invention provides novel carbonatable calcium silicate compositions and carbonatable calcium silicate phases that are made from widely available, low cost raw materials by a process suitable for large-scale production. The method of the invention is flexible in equipment and production requirements and is readily adaptable to manufacturing facilities of conventional cement. The invention offers an exceptional capability to permanently and safely sequesters CO2.
Abstract:
The invention encompasses equipment used to condition a recirculating gas stream in order to cure a CO2 Composite Material (CCM) and processes that use such equipment to cure the CCM. The gas conditioning equipment allows for a process that controls, reduces or eliminates the rate-limiting steps associated with water removal during the curing of a composite material. The equipment may include, but will not be limited to, control over the temperature, relative humidity, flow rate, pressure, and carbon dioxide concentration within the system; which includes the conditioning equipment, any vessel containing the CCM, and the material itself. Flow rate control can be used as a means to achieve uniformity in both gas velocity and composition.
Abstract:
Methods for producing compositions that prevent, mitigate or delay the onset of corrosion of iron or steel (e.g., plain carbon steel) components used as reinforcement or otherwise at least partially embedded in carbonated concrete composite materials and objects based on carbonatable calcium silicate cement are disclosed.
Abstract:
The invention provides composite materials comprising novel bonding elements exhibiting unique microstructures and chemical compositions, and methods for their manufacture and uses, for example, in a variety of concrete components with or without aggregates in the infrastructure, construction, pavement and landscaping industries.
Abstract:
The invention provides composite materials comprising novel bonding elements exhibiting unique microstructures and chemical compositions, and methods for their manufacture and uses, for example, in a variety of concrete components with or without aggregates in the infrastructure, construction, pavement and landscaping industries.
Abstract:
A method of curing a low Ca/Mg cement composition is described that includes providing a predetermined quantity of the low Ca/Mg cement composition in uncured form; and reacting the uncured low Ca/Mg cement composition with a reagent chemical for a time sufficient to cure said cementitious material, wherein said reagent chemical is a compound synthesized from CO2 and comprises dicarboxylic acids, tricarboxylic acids, or alpha-hydroxycarboxylic acids.