Abstract:
Carbonatable calcium silicate-based cements and concretes are presented, which result in concrete compositions that have an improved aesthetics. A cement product includes a plurality of particles of a carbonatable calcium silicate cement and a first additive; wherein, the first additive is a hydrophobic organic acid, or a salt thereof, or a silane, or a polysiloxane.
Abstract:
The invention relates to a method for producing cements by hydrothermally treating a starting material containing sources of CaO and SiO2 in an autoclave at a temperature of 100 to 300° C., and tempering the obtained intermediate product at 350 to 700° C., wherein water formed during tempering is dissipated by grinding the intermediate product and/or tempering taking place under a continuous gas stream. The invention also relates to cements obtained in this manner, hydraulic binders therefrom, and building materials which contain said binders.
Abstract:
The invention provides a curing system that is useful for curing materials that consume carbon dioxide as a reagent. The system has a curing chamber that contains the material to be cured and a gas that contains carbon dioxide. The system includes apparatus that can deliver carbon dioxide to displace ambient air upon loading the system, that can provide carbon dioxide as it is needed and as it is consumed, that can control carbon dioxide concentration, temperature and humidity in the curing chamber during the curing cycle and that can record and display to a user the variables that occur during the curing process. A method of curing a material which requires CO2 as a curing reagent is also described.
Abstract:
The invention provides novel aerated composite materials that possess excellent physical and performance characteristics of aerated concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
Abstract:
Disclosed herein are cement compositions and methods of using set-delayed cement compositions in subterranean formations. In one embodiment, a method of cementing in a subterranean formation is described. The method may comprise providing a set-delayed cement composition comprising water, pumice, hydrated lime, and a set retarder; activating the set-delayed cement composition with a liquid additive to produce an activated cement composition, wherein the liquid additive comprises a monovalent salt, a polyphosphate, a dispersant, and water; and allowing the activated cement composition to set.
Abstract:
The invention provides novel marble-like composite materials and methods for preparation thereof. The marble-like composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production. The precursor materials include calcium silicate and calcium carbonate rich materials, for example, wollastonite and limestone. Various additives can be used to fine-tune the physical appearance and mechanical properties of the composite material, such as pigments (e.g., black iron oxide, cobalt oxide and chromium oxide) and minerals (e.g., quartz, mica and feldspar). These marble-like composite materials exhibit veins, swirls and/or waves unique to marble as well as display compressive strength, flexural strength and water absorption similar to that of marble.
Abstract:
The invention provides compositions and methods for controlling setting of carbonatable calcium silicate compositions that are contaminated with hydrating materials. These carbonatable calcium silicate cements are suitable for use as non-hydraulic cement that hardens by a carbonation process and may be applied in a variety of concrete components in the infrastructure, construction, pavement and landscaping industries.
Abstract:
The invention provides a curing system that is useful for curing materials that consume carbon dioxide as a reagent. The system has a curing chamber that contains the material to be cured and a gas that contains carbon dioxide. The system includes apparatus that can deliver carbon dioxide to displace ambient air upon loading the system, that can provide carbon dioxide as it is needed and as it is consumed, that can control carbon dioxide concentration, temperature and humidity in the curing chamber during the curing cycle and that can record and display to a user the variables that occur during the curing process.
Abstract:
The invention provides novel wood-like composite materials and methods for preparation thereof. The wood-like composite materials can be readily produced from widely available, low cost precursor materials by a production process that involves casting in a mold that is suitable for large-scale production. The precursor materials include calcium silicate, for example, wollastonite, and particulate filler materials which comprise silicon dioxide-rich materials such as quartz, mica, feldspar, sand and glass. Additives can include calcium carbonate-rich and magnesium carbonate-rich materials. Various additives can be used to fine-tune the physical appearance and mechanical properties of the composite material, such as colorants such as particles of colored materials, such as, and pigments (e.g., black iron oxide, cobalt oxide and chromium oxide). These wood-like composite materials exhibit visual patterns unique to wood as well as display compressive strength, flexural strength and water absorption superior to that of wood.
Abstract:
The invention provides novel railroad ties manufactured from novel composite materials that possess excellent physical and performance characteristics matching or exceeding existing concrete RRTs. The RRTs of the invention can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption and more desirable carbon footprint and minimal environmental impact.