摘要:
Disclosed herein are scintillator compositions that comprise pre-scintillator compositions that are mixed with cerium and/or praseodymium halides. The scintillator compositions comprise solid solutions of the pre-scintillator compositions that are mixed with cerium and/or praseodymium halides and are eventually fired. Disclosed herein too are methods of manufacturing the scintillator compositions.
摘要:
Disclosed herein are scintillating materials, methods for their manufacture, and method for their use. In one embodiment, a scintillator comprises the formula A2LnBX6, wherein A comprises thallium (Tl), a Group IA element, and combinations comprising at least one of the foregoing, Ln comprises cerium, B comprises a Group IA element, and X comprises iodine (I) or an iodine compound, wherein the iodine compound comprises iodine (I) and an element selected from the group consisting of fluoride (F), chloride (Cl), bromide (Br), and combinations comprising at least one of the foregoing. Also disclosed are radiation detectors and methods for their use.
摘要:
A scintillator composition is described, including a matrix material and an activator. The matrix material includes at least one lanthanide halide compound. The matrix can also include at least one alkali metal, and in some embodiments, at least one alkaline earth metal. The composition also includes a praseodymium activator for the matrix. Radiation detectors that include the scintillators are disclosed. A method for detecting high-energy radiation with a radiation detector is also described.
摘要:
Disclosed herein are scintillating materials, methods for their manufacture, and method for their use. In one embodiment, a scintillator comprises the formula A2LnBX6, wherein A comprises thallium (Tl), a Group IA element, and combinations comprising at least one of the foregoing, Ln comprises cerium, B comprises a Group IA element, and X comprises iodine (I) or an iodine compound, wherein the iodine compound comprises iodine (I) and an element selected from the group consisting of fluoride (F), chloride (Cl), bromide (Br), and combinations comprising at least one of the foregoing. Also disclosed are radiation detectors and methods for their use.
摘要:
A scintillator composition of a halide perovskite material of at least one ABX3 type halide perovskite, at least one activator for the matrix material and optionally at least one charge compensator to assist the incorporation of the activator in the perovskite lattice and any reaction products thereof. Radiation detectors that use the scintillators are also described, as are related methods for detecting high-energy radiation and method of producing an activated halide-perovskite based scintillator crystal.
摘要:
A light-emitting device includes an anode, a cathode, and at least one organic electroluminescent (“EL”) material positioned between the anode and the cathode. Nanoparticles of at least one photoluminescent material are dispersed in the organic EL material. The organic EL material emits a first electromagnetic (“EM”) radiation having a first spectrum in response to an applied electrical field. The PL material absorbs a portion of the first EM radiation emitted by the organic EL material and emits a second EM radiation having a second spectrum. A plurality of the light-emitting devices are arranged on a transparent substrate to provide a panel display or a lighting source.
摘要:
The present approach involves a radiation detector module with increased quantum efficiency and methods of fabricating the radiation detector module. The module includes a scintillator substrate and a photodetector fabricated on the scintillator substrate. The photodetector includes an anode, active organic elements, and a cathode. The module also includes a pixel element array disposed over the photodetector. During imaging, radiation attenuated by an object to be imaged may propagate through the pixel element array and through the layers of the photodetector to be absorbed by the scintillator which in response emits optical photons. The photodetector may absorb the photons and generate charge with improved quantum efficiency, as the photons may not be obscured by the cathode or other layers of the module. Further, the module may include reflective materials in the cathode and at the pixel element array to direct optical photons towards the active organic elements.
摘要:
An article of manufacture that comprises a structure that is a security system device (or portion thereof) or a fire system device (or portion), where a persistent phosphor and/or a persistent phosphor blend is either integrated in a coating on the structure; applied on the structure; or integrated in the structure, wherein the persistent phosphor comprises certain phosphors or phosphor blends. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
摘要:
A scintillator composition includes a matrix material, where the matrix material includes an alkaline earth metal and a lanthanide halide. The scintillator composition further includes an activator ion, where the activator ion is a trivalent ion. In one embodiment, the scintillator composition includes a matrix material represented by A2LnX7, where A includes an alkaline earth metal, Ln includes a lanthanide ion, and X includes a halide ion. In another embodiment, the scintillator composition includes a matrix material represented by ALnX5, where A includes an alkaline earth metal, Ln includes a lanthanide ion, and X includes a halide ion. In these embodiments, the scintillator composition includes an activator ion, where the activator ion includes cerium, or bismuth, or praseodymium, or combinations thereof.
摘要:
A method of manufacturing a transparent oxide layer is provided. The manufacturing method includes disposing a cadmium tin oxide layer on a support, placing the support with the cadmium tin oxide layer within a chamber of a rapid thermal annealing system, and rapidly thermally annealing the cadmium tin oxide layer by exposing the cadmium tin oxide layer to electromagnetic radiation to form the transparent oxide layer, wherein the rapid thermal anneal is performed without first pumping down the chamber.