Abstract:
A zero current detection circuit includes: one detection winding that is magnetically coupled to a boost inductor of a bridgeless totem pole DEC for converting an AC input voltage to a DC output voltage, has one end connected to ground, and generates a zero current detection signal, which changes in proportion to a boost inductor voltage, at another end; a resistor with one end connected to the other end of the detection winding; a clamp composed of two diodes connected to each other in series with a same forward direction, which clamps the inputted zero current detection signal to the ground potential and a positive power supply voltage to convert to a rectangular signal; and a pulse outputter with a comparator which compares the rectangular signal and a comparison voltage and outputs detection pulses with falling edges that are synchronized with an inductor current reaching zero.
Abstract:
A FET driving circuit includes: two inputs for inputting a DC voltage; two outputs respectively connected to gate and source electrodes of a FET; a switch; a resonant capacitance connected between both ends of the switch; and an LC resonance circuit connected between the inputs and both ends of the switch. When the two inputs are shorted, frequency characteristics of an impedance of the LC resonance circuit include, in order from a low to a high-frequency side, first to fourth resonant frequencies. The first resonant frequency is higher than a switching frequency of the switch, the second resonant frequency is around double the switching frequency, the fourth resonant frequency is around four times the switching frequency, and the impedance has local maxima at the first resonant frequency and the third resonant frequency and local minima at the second resonant frequency and the fourth resonant frequency.
Abstract:
A power conversion apparatus includes: DC input terminals for inputting a DC voltage; AC output terminals for outputting an AC voltage; a switching element; a first resonant capacitance connected across the switching element; a first LC resonance circuit that has an inductance and a capacitance connected in series and is connected together with the switching element between the AC output terminals; and a second LC resonance circuit connected in series together with the switching element between the DC input terminals. The second LC resonance circuit includes a first connector portion connected to one DC input terminal and a second connector portion connected to the switching element, and has a first current path, which includes an inductance, and a second current path, which includes a series circuit with an inductance and a capacitance, formed between the first connector portion and the second connector portion.
Abstract:
A control circuit controls a switching element in a switching power supply unit. The control circuit includes: a controller connected to the switching element; a signal generating circuit connected to the input part of the controller; a reference voltage source connected to the signal generating circuit; and a comparator having a first input terminal to which an output voltage is input from the switching power supply unit, a second input terminal to which a comparison signal is input from the signal generating circuit, and an output terminal connected to the signal generating circuit and to the input part of the controller.
Abstract:
A control circuit according to an embodiment of the present invention is configured to control a switching element of a switching power supply. The control circuit includes a comparator having a first input terminal configured to receive an output voltage of the switching power supply. The comparator has a second input terminal that is connectable to a positive terminal of a reference voltage source. The comparator has an output. The output brings the reference voltage to a first voltage while the output signal takes a first voltage level. The output brings the reference voltage to a second voltage while the output signal takes a second voltage level. The constant voltage source has a positive terminal connected to a negative terminal of the reference voltage source and a ground of the comparator.
Abstract:
A power supply device includes a control unit performing PFM control for a switching element, a voltage detection unit detecting an output voltage of a converter, and a signal generation circuit. The control unit calculates a first control command value based on the output voltage, calculates a new first control command value adjusting the output voltage to a target voltage, calculates a difference value therebetween, and outputs a voltage, which has a polarity corresponding to the difference value, for a first output period corresponding to the difference value. The signal generation circuit generates a pulse signal in which a frequency increases or decreases in accordance with a first command value voltage corresponding to a charged voltage at a storage element according to the new first control command value. The switching element is driven by the pulse signal that has a finer adjustment unit frequency.
Abstract:
A current resonance type DC-DC converter includes a transformer that has a primary winding and a secondary winding, a switching circuit that has a pair of first switching elements and that is connected to the primary winding, an AC/DC transfer circuit that has four rectifying devices, which are connected in full bridge and include a pair of second switching elements, that is connected to the secondary winding, that converts an AC voltage, which is induced at the secondary winding, into a DC voltage and that outputs the DC voltage, and a control circuit that controls ON and OFF operations of the pairs of the first and second switching elements. The control circuit controls the ON and OFF operations so as to synchronize the pair of the first switching elements with the pair of the second switching elements.