Abstract:
A method of channel access for a radio device in an asynchronous channel hopping wireless network. A backoff time is set from an Interference Avoidance Delay plus a random backoff time for transmissions from the radio device. For initial frame transmissions, an initial value for a number of backoffs (nb) and initial number of preamble detection backoffs (npdb) is set. After waiting for expiring of the initial backoff time and provided a current npdb_value
Abstract:
A system and method for enhanced channel hopping sequence is described. A pseudo random channel hopping sequence is redistributed using certain system specific parameters for separating adjacent transmission channels within a predetermined number of consecutive transmission channel numbers in the random channel hopping sequence to improve inter-channel interference between adjacent transmission channels.
Abstract:
Power conservation is provided in a network of globally unsynchronized wireless communication devices that use asynchronous channel hopping. Each wireless communication device defines its own channel hopping schedule. The channel hopping schedules include channel hop intervals when the device's receiver is active for receiving transmissions, and sleep intervals when the receiver is in a low power sleep state. Parameters associated with the sleep intervals are defined by each wireless communication device independently of external constraint.
Abstract:
Power Line Communications (PLC) device for enhanced carrier sense multiple access (CSMA) protocols are described. The PLC device includes a modem, an AC interface and a PLC engine. The engine is configured for transmitting PC packets over a plurality of electrical wires using a particular channel. Transmitting a normal priority packet may include attempting to access a communications channel to transmit a frame after a backoff time proportional to a randomly generated number within a contention window (CW), the CW having an initial value carried over from a previous transmission of a different frame. Additionally or alternatively, some of techniques described herein may facilitate the spreading of the time over which devices attempt to transmit packets, thereby reducing the probability of collisions using, for example, Additive Decrease Multiplicative Increase (ADMI) mechanisms.
Abstract:
A method of communications includes compiling a data frame for physical layer (PHY) by a first communications device at a first communications node on a network. The data frame includes a single tone PHY header portion and a data payload portion in a set of tones including at least one tone having a frequency different from a frequency of the single tone. The PHY header portion includes tone mask identification information identifying the set of tones. The first communications device transmits the data frame over the powerline to a second communications device at a second communications node on the powerline. The second communications device receives the data frame, and decodes the data payload using the tone mask identification information in the PHY header portion.
Abstract:
A method of network joining. A first service node (SN) of SNs in a multi-Personal Area Network including data concentrators (DCs) that communicate with a server over a common communications medium configures a beacon request frame (BRF) including a Media Access Control (MAC) header including a header information element (HIE) or a payload IE (PIE), and a MAC CRC footer. The BRF includes a unique address of a first DC corresponding to the first SN or an encrypted data sequence with a key. The first SN transmits the BRF over the common communications medium. Responsive to receiving the BRF, the first DC processes the BRF to identify the unique address or has the key and applies the key to decipher the encrypted BRF. The first DC transmits a beacon frame over the common communications medium, wherein others of the plurality of DCs do not transmit respective beacon frames.