Abstract:
A system comprises a set of sensors on a first end of a vehicle having the first end and a second end, and a controller. The sensors are configured to generate corresponding sensor data based on a detected marker along a direction of movement of the vehicle. A first sensor has a first inclination angle with respect to the detected marker, and a second sensor has a second inclination angle with respect to the detected marker. The controller is configured to compare a time at which the first sensor detected the marker with a time at which the second sensor detected the marker to identify the first end or the second end as a leading end of the vehicle, and to calculate a position of the leading end of the vehicle based on the sensor data generated by one or more of the first sensor or the second sensor.
Abstract:
A fusion sensor arrangement includes a first sensor configured to detect the presence of an object along a wayside of a guideway, wherein the first sensor is sensitive to a first electromagnetic spectrum. The fusion sensor arrangement further includes a second sensor configured to detect the presence of the object along the wayside of the guideway, wherein the second sensor is sensitive to a second electromagnetic spectrum different from the first electromagnetic spectrum. The fusion sensor arrangement further includes a data fusion center connected to the first sensor and to the second sensor, wherein the data fusion center is configured to receive first sensor information from the first sensor and second sensor information from the second sensor, and to resolve a conflict between the first sensor information and the second sensor information.
Abstract:
Systems and methods of calibrating an Inertial Measurement Unit (IMU) on a vehicle are disclosed. In some embodiments, a first tilt angle of the IMU is measured with the IMU while the vehicle is stationary. A second tilt angle of the IMU is measured with an inclinometer or tilt sensor while the vehicle is stationary. The orientation of the IMU is corrected based on the first tilt angle and the second tilt angle.
Abstract:
A vehicle positioning system includes processing circuitry in communication with the vehicle. The system further includes a memory connected to the processing circuitry, where the memory is configured to store executable instructions that, when executed by the processing circuitry, facilitate performance of operations. The operations include to receive vehicle-speed data from a first set of sensors operably coupled to the vehicle. The operations further include to predict a vehicle location based on the vehicle-speed data. The operations further include to receive inertial data from a second set of sensors operably coupled to the vehicle, and update the predicted vehicle location based upon the inertial data.
Abstract:
A control system for a vehicle includes a first controller, a second controller, and an auto-tuner. The first controller is configured to generate an optimal trajectory of the vehicle along a path. The second controller is configured to, based on the optimal trajectory generated by the first controller, generate motoring and braking commands to a motoring and braking system of the vehicle for controlling the vehicle to travel along the path. The auto-tuner includes a processor configured to solve a real-time optimization problem to determine at least one parameter of at least one of the first controller or the second controller.
Abstract:
A method of common controller area network (CAN) bus traffic supervision on a system having a common CAN bus, a first CAN chip and a second CAN chip, the first CAN chip and the second CAN chip are coupled together with the common CAN bus, the method includes comparing a first CAN frame received from the first CAN chip to a second CAN frame received from the second CAN chip within a CAN comparison period, and detecting a failure of at least the first CAN chip or the second CAN chip. Detecting the failure of at least the first CAN chip or the second CAN chip includes determining that the first CAN frame is not identical to the second CAN frame within the CAN comparison period.
Abstract:
A standalone odometry device includes an accelerometer and/or gyroscope configured to be mounted on a wheel or axle of a vehicle. A controller in communication with the accelerometer and/or gyroscope is configured to receive data from the accelerometer and/or gyroscope. The controller processes the data to determine one or more of the speed, wheel rotation direction, accumulated distance travelled, stationary status, acceleration, deceleration, wheel diameter, and grade of surface on which the wheel is in contact.
Abstract:
A system comprises a set of sensors on a first end of a vehicle having the first end and a second end, and a controller. The sensors are configured to generate corresponding sensor data based on a detected marker along a direction of movement of the vehicle. A first sensor has a first inclination angle with respect to the detected marker, and a second sensor has a second inclination angle with respect to the detected marker. The controller is configured to compare a time at which the first sensor detected the marker with a time at which the second sensor detected the marker to identify the first end or the second end as a leading end of the vehicle, and to calculate a position of the leading end of the vehicle based on the sensor data generated by one or more of the first sensor or the second sensor.
Abstract:
A system comprises a speed detector, a marker sensor, a controller, a sensor unit, and a processor. The speed detector is configured to generate speed data associated with a movement of a vehicle. The marker sensor is configured to generate marker data based on a detection of an object along a wayside of a guideway. The controller is configured to calculate a distance the vehicle moved, generate location information, and generate an indication the vehicle is stationary. The sensor unit comprises an accelerometer, a gyroscope, and a magnetometer. The sensor unit is configured to generate sensor data based on information gathered by one or more of the accelerometer, the gyroscope, or the magnetometer. The processor is configured to process the sensor data to determine a vehicle position based on the sensor data and the location information. The controller is further configured to compare the location information with the vehicle position.
Abstract:
Embodiments of a method of locating a guideway mounted vehicle are disclosed. In one embodiment, a communication signal is transmitted to a wayside communication device. A range estimation is obtained based on the communication signal. A radar signal is transmitted to at least one reflector. An accuracy of the range estimation is increased based on the radar signal.