Abstract:
The disclosed technology provides alkylphenol-containing detergent having at least one unit (a) of an alkyl-substituted phenol wherein the alkyl group is derived from oligomers of an olefin compound containing 3 to 8 carbon atoms, wherein the polyolefin-derived alkyl group comprises at least 30 mol percent of an olefin with 4 or more carbon atoms. The invention further relates to a method of lubricating a mechanical device with the lubricant composition.
Abstract:
The disclosed technology provides alkylphenol-containing detergent having at least one unit (a) of an alkyl-substituted phenol wherein the alkyl group is derived from oligomers of an olefin compound containing 3 to 8 carbon atoms, wherein the polyolefin-derived alkyl group comprises at least 30 mol percent of an olefin with 4 or more carbon atoms. The invention further relates to a method of lubricating a mechanical device with the lubricant composition.
Abstract:
The disclosed technology provides a lubricating composition comprising an oil of lubricating viscosity and 0.01 wt % to 10 wt % of an oxyalkylated aromatic polyol compound, wherein the aromatic compound has at least one alkoxy group represented by −OR1 group, R1 is hydroxyalkyl, or a (poly)ether group, and either: at least one hydroxyl group, or at least one alkoxy group represented by —OR1 group, where R1 is alkyl, or a (poly)ether group, or at least one oxyalkyl group represented by —OR1, where R1 is hydroxyalkyl or a (poly)ether group. The disclosed technology further relates to a method of lubricating a mechanical device (such as an internal combustion engine) with the lubricating composition. The disclosed technology further relates to the use of the oxyalkylated aromatic polyol compound in the lubricating composition to a passenger car internal combustion engine at least one of (i) control of fuel economy, (ii) control of corrosion, (iii) cleanliness, and (iv) control of bore wear.
Abstract:
The disclosed technology provides a lubricating composition comprising an oil of lubricating viscosity and 0.01 wt % to 10 wt % of an oxyalkylated aromatic polyol compound, wherein the aromatic compound has at least one alkoxy group represented by —OR1 group, R1 is hydroxyalkyl, or a (poly)ether group, and either: at least one hydroxyl group, or at least one alkoxy group represented by —OR1 group, where R1 is alkyl, or a (poly)ether group, or at least one oxyalkyl group represented by —OR1, where R1 is hydroxyalkyl or a (poly)ether group. The disclosed technology further relates to a method of lubricating a mechanical device (such as an internal combustion engine) with the lubricating composition. The disclosed technology further relates to the use of the oxyalkylated aromatic polyol compound in the lubricating composition to a passenger car internal combustion engine at least one of (i) control of fuel economy, (ii) control of corrosion, (iii) cleanliness, and (iv) control of bore wear.
Abstract:
A sulfurized alkaline earth metal (e.g., calcium) dodecylphenate is prepared by reacting (i) dodecylphenol with (ii) calcium hydroxide or calcium oxide in an amount of about 0.3 to about 0.7 moles per mole of dodecylphenol charged and (iii) an alkylene glycol in an amount of about 0.13 to about 0.6 moles per mole of dodecylphenol charged; and reacting the product of the first step with sulfur in an amount of about 1.6 to about 3 moles per mole of dodecylphenol charged; and thereafter optionally reacting the product with additional calcium hydroxide or calcium oxide and with carbon dioxide so as to form an overbased phenate. The product thus prepared has reduced levels of monomeric dodecylphenol.