Abstract:
To perform inter-pixel image processing with lower latency and higher speed.An image sensor includes: a pixel array unit in which pixels having a photoelectric conversion function are arranged in an array; an AD conversion unit configured to perform AD conversion processing on pixel signals output from the pixels in parallel for each column of the pixels of the pixel array unit; a memory unit configured to hold pixel signals of any number of rows subjected to AD conversion in the AD conversion unit for each column of the pixels; an inter-pixel image processing unit configured to read pixel signals of any rows and columns from the memory unit, and perform computing between the pixel signals in parallel for each column of the pixels; and an output circuit configured to control output, to an outside, of pixel signals output from the AD conversion unit and pixel signals output from the inter-pixel image processing unit. The present technology can be applied to, for example, a CMOS image sensor.
Abstract:
An example system for downhole measurement disclosed herein comprises a tool to be positioned downhole in a formation, the tool comprising an imaging system to determine measurement information from imaging information obtained by sensing light, and an illumination system to control source light to be emitted by the tool. The system also comprises an optical cable to sense an optical field of view that is remote from the tool, the optical cable including an optical fiber bundle comprising a bundle of imaging fibers to convey the imaging information from a sensing end of the optical cable to the imaging system, and a plurality of illumination fibers positioned outside the bundle of imaging fibers, the illumination fibers to convey the source light from the tool to the sensing end of the cable, the illumination fibers to emit the source light to illuminate the optical field of view.
Abstract:
An object of the present invention is to provide a device that is capable of presenting image information that is larger than an object by irradiating light onto the object that moves on a trajectory that is not known. An object tracking section controls line of sight direction so as to be directed towards a moving object. A rendering section irradiates a light beam in a direction along the line of sight direction. In this way the rendering section can irradiate the light beam onto the surface of the object. It is possible to present information, that has been rendered in a range that is larger than the surface area of the object, to an observer, utilizing an after image of the light beam that has been irradiated on the surface of the object.
Abstract:
The present invention relates to technology for detecting three-dimensional motion of an object in a non-contact manner, at high speed, and with comparatively high precision. A speed detection section 11 detects speed of an object using a first laser beam 111 that is irradiated towards an object 100, and is reflected by the object 100. A distance detection section 12 detects speed of the object 100 using a second laser beam 121 that is irradiated towards the object 100, and is reflected by the object 100. The second laser beam 121 is configured to be irradiated at substantially the same time and to substantially the same position as the first laser beam 111. A motion calculation section 13 calculates motion of the object 100 using information on orientation of the first and second laser beams, the speed, and the distance.
Abstract:
This invention provides a technology that allows the acquisition of background differentials using images acquired by a camera, the viewpoint of which moves. First, said camera acquires a background image, i.e. an image that does not contain a target object. Using information on the line-of-sight direction and viewpoint position of the camera, position information for pixels in the background image is transformed to polar-coordinate information Next, the camera acquires an object image. Using information on the line-of-sight direction and viewpoint position of the camera, position information for pixels in the object image is transformed to polar-coordinate information. The polar-coordinate information for the pixels in the object image is used to identify a target background, said target background being the part of the background image in an angle region corresponding to the object image. By comparing the object image and the target background, the differential therebetween is extracted.
Abstract:
A blurless image capturing system sequentially acquires images with little blur, even in a situation where a camera moves. An image capturing camera unit and a mirror unit are both capable of continuous movement in at least a one-dimensional direction. The image capturing camera unit acquires an image of a physical object present within an object region by directing line of sight direction towards the object region by means of the mirror unit. The mirror body changes the line of sight from the image capturing camera unit. The drive unit changes an angle of the mirror body in a given angular velocity in accordance with movement of the image capturing camera unit and the mirror body In this way it is possible to keep the line of sight from the image capturing camera unit directed towards a physical object for a given time. The drive unit directs the line of sight from the image capturing camera unit towards another object region by driving the mirror body. The control unit controls operation of the drive unit.
Abstract:
A varifocal lens capable of exhibiting high lens performance even with low lens power, and also capable of realizing a comparatively large aperture includes a first elastic membrane arranged between a first medium and a second medium. The first elastic membrane is capable of elastic deformation by pressure from the first medium or the second medium. A drive section causes change in curvature of the first elastic membrane by causing variation in pressure or volume of the first medium or the second medium. The first tensile force applying section applies isotropic tensile force to the first elastic membrane.
Abstract:
A fluid separator separates a fluid flow into a plurality of fluid portions, and delivers at least a first fluid portion of the plurality of fluids to a flow conduit. An imaging-based measurement device includes a light source and an image sensor. The imaging-based measurement device measures the first fluid portion in the flow conduit. An imaging processor in the imaging-based measurement device processes the measurement data to determine a characteristic of the first fluid portion.
Abstract:
An example system for downhole measurement disclosed herein comprises a tool to be positioned downhole in a formation, the tool comprising an imaging system to determine measurement information from imaging information obtained by sensing light, and an illumination system to control source light to be emitted by the tool. The system also comprises an optical cable to sense an optical field of view that is remote from the tool, the optical cable including an optical fiber bundle comprising a bundle of imaging fibers to convey the imaging information from a sensing end of the optical cable to the imaging system, and a plurality of illumination fibers positioned outside the bundle of imaging fibers, the illumination fibers to convey the source light from the tool to the sensing end of the cable, the illumination fibers to emit the source light to illuminate the optical field of view.
Abstract:
A reflection characteristic measurement device is provided that comprises: a control unit configured to measure a reflection characteristic of an object based on target information and instruction information, wherein: the target information is information including a coordinate positional relationship among a light source position of an incident light, a light detection position of a reflected light and a measurement point at the object, and numerical values related to the incident light and the reflected light, the incident light is light irradiated to the measurement point, the reflected light is light that the incident light is irradiated to the measurement point and then reflected at the measurement point, the instruction information is information related to an existing measurement result of the reflection characteristic, and the number of combinations of the coordinate positional relationship included in the target information is 1 to 15.