Abstract:
An organic EL (electroluminescent) device includes a translucent substrate, a transparent electrode, a luminescent layer, and a cathode placed over one surface of the translucent substrate, and a light extraction film having unevenness placed on the other surface. The surface of the cathode facing the luminescent layer has a plurality of recesses or protrusions. The Fourier transform image of the surface of the cathode facing the luminescent layer has a surface plasmon absorption suppression area including a spatial frequency v obtained from Eq. (I) and a light scattering area not including spatial frequencies equal to or greater than the spatial frequency v.
Abstract:
A display includes light-scattering regions. Each of the light-scattering regions is provided with linear protrusions and/or recesses having the same longitudinal direction. The light-scattering regions are different from each other in the longitudinal direction.
Abstract:
A display includes light-scattering regions. Each of the light-scattering regions is provided with linear protrusions and/or recesses having the same longitudinal direction. The light-scattering regions are different from each other in the longitudinal direction.
Abstract:
Provided is an information display medium that can enhance a forgery prevention effect. An information display medium (100) includes a light reflection layer (20) made of a metal or a metallic oxide and partially or fully placed on one surface of a substrate, and the light reflection layer (20) includes a first region (30) where first information is displayed by either of or a combination of an outline shape and a shape of an uneven region, and a second information display region (21a) where identification information formed by partial material removal of the light reflection layer (20), the second information display region being set to partially or fully overlap with the light reflection layer (20) where the first information is displayed in the first region (30).
Abstract:
An optical film including a recording surface on which a plurality of unit blocks is disposed at regular intervals. For these unit blocks, phase components of light from a reconstruction point are calculated. The recording surface includes a calculated element region provided with an array of the unit blocks for which phase components of light from the reconstruction point are calculated for reproduction of an image. A first image is a monotone reconstruction image having even brightness, and a second image is a grayscale image having brightness gradation.
Abstract:
A display body includes a display surface including a plurality of display region groups. Each display region includes at least one reflection surface that is configured to reflect light incident on the display surface toward an area including a corresponding one of reflection directions that are associated with the respective display region groups. Each display region group is configured to form an image unique to the display region group in a corresponding one of the reflection directions through reflection of light on the reflection surfaces in the display region group. The display region groups are configured to form, in two adjacent ones of the reflection directions, different images that have a interrelation between each other.
Abstract:
A display includes a substrate with a light-transmitting property, a relief structure-forming layer disposed on at least one surface of the substrate and including a relief-structured region on a surface thereof opposite to its surface in contact with the substrate, a light-reflecting layer disposed on the surface of the relief structure-forming layer including the relief-structured region, and a printed layer formed on a surface of the substrate opposite to the surface on which the relief structure-forming layer is disposed, or between the relief structure-forming layer and the light-reflecting layer, or on a side of the light-reflecting layer opposite to its surface in contact with the relief structure-forming layer. The relief-structured region is constituted by recessed or protruding portions arranged two-dimensionally, has low reflectivity and low diffusibility under a normal illumination condition, and exhibits a diffracted light-emitting property under a specific condition.
Abstract:
A display includes light-scattering regions. Each of the light-scattering regions is provided with linear protrusions and/or recesses having the same longitudinal direction. The light-scattering regions are different from each other in the longitudinal direction.
Abstract:
In an information recording medium, in which an information recording medium has diffraction grating cells arranged therein, a plurality of types of the diffraction grating cells make up one information recording area. At least one type of the diffraction grating cells included in the diffraction grating cells making up the information recording area are information recording elements, while the other types of the diffraction grating cells included in the diffraction grating cells making up the information recording area are information hiding elements. The information is recorded by two-dimensional arrangement of the diffraction grating cells constituting the information recording elements in the information recording area.
Abstract:
A display includes light-scattering regions. Each of the light-scattering regions is provided with linear protrusions and/or recesses having the same longitudinal direction. The light-scattering regions are different from each other in the longitudinal direction.