Abstract:
A semiconductor structure includes a substrate, a first semiconductor fin, a second semiconductor fin, and a first lightly-doped drain (LDD) region. The first semiconductor fin is disposed on the substrate. The first semiconductor fin has a top surface and sidewalls. The second semiconductor fin is disposed on the substrate. The first semiconductor fin and the second semiconductor fin are separated from each other at a nanoscale distance. The first lightly-doped drain (LDD) region is disposed at least in the top surface and the sidewalls of the first semiconductor fin.
Abstract:
A semiconductor substructure with improved performance and a method of forming the same is described. In one embodiment, the semiconductor substructure includes a substrate, having an upper surface; a gate structure formed over the substrate; a spacer formed along a sidewall of the gate structure; and a source/drain structure disposed adjacent the gate structure. The source/drain structures is formed of a strain material and is disposed in an recess that extends below the upper surface of the substrate. An interface between the spacer and the source-drain structure can be at least 2 nm above the upper surface of the substrate.
Abstract:
A semiconductor substructure with improved performance and a method of forming the same is described. In one embodiment, the semiconductor substructure includes a substrate, having an upper surface; a gate structure formed over the substrate; a spacer formed along a sidewall of the gate structure; and a source/drain structure disposed adjacent the gate structure. The source/drain structures is formed of a strain material and is disposed in an recess that extends below the upper surface of the substrate. An interface between the spacer and the source-drain structure can be at least 2 nm above the upper surface of the substrate.