Abstract:
Some aspects of the present disclosure relate a method. The method attempts to write an expected multi-bit word to a memory location in memory. After writing of the multi-bit word has been attempted, an actual multi-bit word is read from the memory location. The actual multi-bit word is then compared with the expected multi-bit word to identify a number of erroneous bits and a number of correct bits stored in the memory location. The number of erroneous bits is re-written to the memory location without attempting to re-write the correct bits to the memory location.
Abstract:
A method includes forming an insulator over a substrate. The insulator includes a first electrode, a second electrode, and a resistive element between the first electrode and the second electrode. The insulator is transformed into a resistor by applying a voltage to the insulator. The resistor is electrically connected to a transistor after transforming the insulator into the resistor.
Abstract:
A trimming process for setting a reference current used in operating an MRAM module comprising an operational MRAM cell coupled to a bit line, multiple reference MRAM cells coupled to a reference bit line, and a sense amplifier coupled to the bit line and the reference bit line is disclosed in some embodiments. The process includes applying a bit line reference voltage to the reference bit line to provide a reference cell current formed by a sum of respective currents through the plurality of reference MRAM cells. The reference cell current is detected. A determination is made as to whether the detected reference cell current differs from a target reference cell current. The bit line reference voltage is varied, or a sensing ratio of the sense amplifier is varied, if it is determined that the detected reference cell current differs from the target reference cell current.