摘要:
A method for controlling an angular distribution of a light-beam emitted by a light-output device (102, 200) comprising a first set of light-sources (105, 211) comprising at least one light-source configured to emit light within a first angular range (221, 231, 241) and second set of light-sources (107, 210) comprising at least one light-source configured to emit light within a second angular range (222, 232, 242), wherein the first angular range is different from the second angular range. The method comprises the steps of: receiving (401) a dimmer setting (VDS) from a dimmer (101); controlling (404), if the dimmer setting is within a first predetermined range, the first set of light-sources to emit light within the first angular range; and controlling (405), if the dimmer setting is within a second predetermined range, the second set of light-sources to emit light within the second angular range. Through the method according to the invention the angular distribution of light emitted from a single light-output device may be controlled using a single switch, thereby avoiding the need for having a plurality of switches and/or new wiring which would otherwise be required.
摘要:
An elongated luminaire for illuminating objects in front of the luminaire, comprising a plurality of side emitting LEDs (1) in only one straight array mounted on an elongated base plate (2). The base plate (2) carries two elongated reflectors (3) extending on either side of the array of LEDs (1) and parallel to the array of LEDs (1). Each reflector (3) has a reflecting surface (4) directed towards the array of LEDs (1).
摘要:
An optical scanning device scans optical record carriers, such as three optical record carriers, where each optical record carrier has an information layer having a depth which is different from the information layer depth of other optical record carriers, where d3
摘要:
An optical scanning device for scanning optical record carriers having cover layers of different thicknesses. The scanning device has a first mode for scanning a first optical record carrier, a second mode for scanning a second optical record carrier and a third mode for scanning third optical record carrier. The device comprises an objective lens system and a switchable optical element having a first discrete state and a different, second discrete state. The element comprises: a fluid system including a first fluid and a different, second fluid (19); a wavefront modifier (17); and a fluid system switch for acting on the fluid system to switch between the first and second discrete states of the element. When the element is in the first discrete state, the wavefront modifier (17) is substantially covered by the first fluid, and when the element is in the second discrete state, the wavefront modifier (17) is substantially covered by the second fluid (19). The wavefront modifier includes a non-periodic phase structure including a plurality of stepped annular zones separated by steps, the zones forming a non-periodic radial pattern, and is characterized in that the wavefront modifier further includes an aspherical surface. The scanning device is arranged to operate using the element in the second state to generate spherical aberration when in the second mode, the aspherical surface of the element in the second state compensating for more than half of the spherical aberration due to the objective lens system and second record carrier in combination.
摘要:
For optical data storage applications, for example, for holographic storage applications, a radiation beam (12) with a flat intensity profile is needed. The radiation source device (1) of the invention comprises a beam shaper element (5) and a collimating element (7) between a semiconductor laser (3) and an output coupler (9) and provides such a radiation beam (12) with an increased efficiency. An external resonator is thereby provided. Further, a relatively fast tuning of the wavelength of the output radiation beam (12) can be provided.
摘要:
An optical scanning device for scanning an information layer (2) of an optical record carrier (3). The device includes a radiation source (7) for providing at least a first radiation beam of a first polarization along a first optical path, and a second radiation beam of a second, different polarization along a second, different optical path. An objective lens system, having an optical axis (19a), is arranged to converge the radiation beams on the information layer A beam-deflecting element (30) comprising a birefringent material is orientated such that each of said polarized radiation beams experiences a different index of refraction upon passing through the birefringent material, and is arranged to refract at least the first radiation beam towards the optical axis.
摘要:
An optical scanning device for scanning a first optical record carrier, a second, different, optical record carrier and a third, different, optical record carrier, each record carrier having an information layer. The scanning device includes a radiation source system arranged to produce first, second and third radiation beams for scanning the first, second and third record carriers with first, second and third wavelengths, respectively; and a diffraction structure (34) arranged to introduce a first, second and third wavefront modification into the first, second and third radiation beams, respectively. The diffraction structure includes a surface having a plurality of steps (38), each step having a step height (hj) which controls a form of the first, second and third wavefront modifications, characterized in that the diffraction structure is formed from a material having an Abbe number of less than 50, whereby dispersion is provided between the first, second and third wavelengths in order to further control the form of the first, second and third wavefront modifications.
摘要:
An optical head for use in the scanning of a record carrier, the record carrier having data stored on data tracks therein on a plurality of information layers (3, 4) at a plurality of depths within the record carrier. The optical head comprises: a movable optical element (16) arranged in an optical path to act upon a first radiation beam (12) and a second radiation beam (14) to provide the beams with a different displacement perpendicular to the optical path; and a lens system for focusing said first beam (12) at a first focal point (A) on a first information layer (3) of the record carrier and the focusing of the second beam (14) at a second different focal point (B) on a second information layer (4), wherein a spacing, transverse to the data tracks, between said first and second focal points (A, B) is controllable by varying the configuration of the movable optical element.
摘要:
An optical compensator is included in an optical scanning device for scanning optical record carriers. There are at least two different information layer depths within two different carriers. The scanning device produces first to third radiation beams respectively having different wavelengths for scanning first to third record carriers, respectively. The optical compensator has a non-periodic phase structure through which each radiation beam is arranged to pass. The non-periodic phase structure includes stepped annular zones separated by steps. The zones form a non-periodic radial pattern. The stepped annular zones introduce first to third different wavefront modifications into at least part of the first to third radiation beams, respectively. Radial height variations are included in the stepped annular zones, and are arranged such that non-zero contributions are provided to each wavefront modification by the optical compensator in each stepped annular zone.
摘要:
In an optical scanning device (10) capable of scanning an information plane of an optical record carrier (5) of different types such as BD, DVD and CD, the diameter of the radiation spot on the detector (7) is dependent on the numerical aperture of the objective system (4) that is used for scanning the record carrier An optimal design of the optical detection system for scanning a BD, result in a small radiation spot for the other types such as DVD and CD. By implementing an optical element (13) that increases the diameter of the radiation spot in the situation a DVD or CD is scanned, the influence of stray light is reduced and the tracking signals are improved