Abstract:
Situational-awareness controllers and methods to increase situational-awareness for an actor associated with a triggering event are described. An example method includes in response to receiving a notification of a triggering event generated by at least one sensor, a computing device accessing information that includes related to an actor associated with the triggering event. The computing device correlates the information to a compilation of historical information by (i) determining whether the actor's location is associated with one or more safety events stored as part of the compilation of historical information and (ii) determining a risk level of the actor based on whether the one or more associated safety events occurred within a predetermined range of time from the time associated with the triggering event. The computing device generates a command based on a result of the correlating and sends the command to at least one controllable device.
Abstract:
Systems and methods for increasing situational awareness for a tool operator and an individual approaching a working field of the tool are described. An example method includes activating a first device, where the first device has a working field and has an operational path configured to intersect a barrier. A proximity sensor of the second device then detects a presence of an object in a sensor zone of the second device. The second device transmits a wireless signal to the first device indicating the presence of the object in the sensor zone of the second device. Then at least one of the first device and the second device issues a first alert indicating the presence of the object in the sensor zone of the second device.
Abstract:
A system for quantifying x-ray backscatter system performance may include a support; a plurality of rods mounted on the support; the rods of the plurality of rods arranged parallel to each other, having generally curved outer surfaces, and being arranged in groups of varying widths, each group of the groups having at least two of the rods of a same width; and a user interface configured to be connected to receive a backscatter signal from an x-ray backscatter detector associated with an x-ray tube, apply a transfer function to generate a transfer curve representing x-ray backscatter for each rod of the plurality of rods from x-rays transmitted by the x-ray tube.
Abstract:
A system in accordance with one embodiment comprises a marking device attached to a holonomic-motion crawler vehicle capable of movement on non-horizontal surfaces. Modular attachment and motion control interfaces on the platform allow attachment of various types of marking and non-destructive inspection (NDI) sensor modules. The crawling vehicle marks the location of sub-surface features on an aircraft skin or overlaid patch (doubler) using a pen or sticker or tape applicator that is guided based on either a 3-D CAD model or NDI data collected as the vehicle crawls. A second embodiment utilizes an automated NDI scanner to collect 2-D image data of the substructure to enable manual or automated feature/edge selection for marking. Location tracking of the marking device can be implemented using a local positioning system or a motion capture system.
Abstract:
A system for quantifying x-ray backscatter system performance is disclosed. The system includes one or more x-ray backscatter detectors, an x-ray tube, a support, and a plurality of rods mounted on the support and arranged in groups. Each group of rods includes at least two rods having the same width. The system also includes a user interface configured to connect to the x-ray backscatter detectors to receive a backscatter signal from the x-ray backscatter detectors associated with the x-ray tube, where the user interface plots a modulation transfer function representing x-ray backscatter for each rod of the plurality of rods from x-rays transmitted by the x-ray tube.
Abstract:
A ground-based visual-inspection system includes a ground-based visual-inspection apparatus and a control system. The ground-based visual-inspection apparatus includes a mobile base, an actuatable arm coupled to the mobile base, and an effector coupled to the actuatable arm. The actuatable arm is locatable in a three dimensional space. The end effector includes a camera configured to capture images of a structure, such as an aircraft. The control system is configured to determine location information of the camera relative to a reference location and associate the location information with the images.
Abstract:
A method and apparatus for performing an operation on a workpiece using a multi-axis compliant end-effector for attachment to a robotic device. The end-effector is positioned at a nominal location of a workpiece feature on which the operation is to be performed. The end-effector is passively aligned with the workpiece feature by contacting the end-effector with the workpiece feature. The operation is performed on the workpiece feature in response to aligning the end effector with the workpiece feature.
Abstract:
A method, system, and apparatus for visually presenting a virtual environment relative to a physical workspace. An output device visually presents a view of the virtual environment to guide a human operator in performing a number of operations within the physical workspace. A mounting structure holds the output device and is movable with at least one degree of freedom relative to the physical workspace. A sensor system measures movement of the output device relative to the physical workspace to generate sensor data. A controller computes a transformation matrix and the set of scale factors to align the virtual environment and the physical workspace. The controller changes the view of virtual environment based on the sensor data to thereby change the view of the virtual environment in correspondence with the movement of the output device relative to the physical workspace.
Abstract:
A method, apparatus, and system for adhering a vacuum to a surface is provided. A seal is positioned relative to a surface. The seal is associated with a structure and is in communication with a channel within the structure. The seal is rotated relative to the structure such that the seal at least partially conforms to the surface. Air is drawn into the channel within the structure through the seal such that the seal adheres to the surface.
Abstract:
A ground-based visual-inspection system includes a ground-based visual-inspection apparatus and a control system. The ground-based visual-inspection apparatus includes a mobile base, an actuatable arm coupled to the mobile base, and an effector coupled to the actuatable arm. The actuatable arm is locatable in a three dimensional space. The end effector includes a camera configured to capture images of a structure, such as an aircraft. The control system is configured to determine location information of the camera relative to a reference location and associate the location information with the images.