Abstract:
A film forming system is to form an organic film on a substrate having a pattern formed on a surface thereof, includes: an organic film formation section configured to perform an organic film formation treatment on the substrate to form the organic film on the substrate; a film thickness measurement section configured to measure a film thickness of the organic film on the substrate; and an ultraviolet treatment section configured to perform an ultraviolet irradiation treatment on the organic film on the substrate to remove a surface of the organic film. In the film forming system, the organic film formation section, the film thickness measurement section, and the ultraviolet treatment section are disposed side by side in this order along a transfer direction of the substrate.
Abstract:
A substrate treatment system for treating a substrate, includes: a treatment station in which a plurality of treatment apparatuses which treat the substrate are provided; an interface station which directly or indirectly delivers the substrate between an exposure apparatus which is provided outside the substrate treatment system and performs exposure of patterns on a resist film on the substrate, and the substrate treatment system; a light irradiation apparatus which performs post-exposure using UV light on the resist film on the substrate after the exposure of patterns is performed; and a post-exposure station which houses the light irradiation apparatus and is adjustable to a reduced pressure or inert gas atmosphere, wherein the post-exposure station is connected to the exposure apparatus directly or indirectly via a space which is adjustable to a reduced pressure or inert gas atmosphere.
Abstract:
In the present invention, photolithography processing is performed on a substrate to form a resist pattern over the substrate, and a treatment agent is caused to enter a side surface of the resist pattern and metal is caused to infiltrate the side surface of the resist pattern via the treatment agent, the formed resist pattern has a high etching selection ratio with respect to a film to be treated on the substrate so as to suppress a so-called pattern collapse, therefore.