Abstract:
The present invention is to form an organic film on a substrate having a pattern formed on a front surface thereof and configured to: apply an organic material onto the substrate; then thermally treat the organic material to form an organic film on the substrate; and then perform ultraviolet irradiation processing on the organic film to remove a surface of the organic film down to a predetermined depth, thereby appropriately and efficiently form the organic film on the substrate.
Abstract:
A substrate treatment method includes: performing a first heat treatment on a substrate on which a coating film of a metal-containing resist has been formed and subjected to an exposure treatment, to form the metal-containing resist into a precursor in an exposed region of the coating film; thereafter, performing a second heat treatment on the substrate to condense the metal-containing resist formed into the precursor in the exposed region of the coating film; and thereafter, performing a developing treatment on the substrate.
Abstract:
A substrate treatment method of treating a treatment object substrate includes before applying a resist solution for forming a resist film onto a base film formed on a substrate surface of the treatment object substrate, performing a treatment of decreasing a polarity of the base film when the polarity of the base film is higher than a polarity of the resist solution, and performing a treatment of increasing the polarity of the base film when the polarity of the base film is lower than the polarity of the resist solution.
Abstract:
The present invention includes: a resist film forming step of forming a resist film over a substrate; an exposure step of exposing the resist film into a predetermined pattern; a metal treatment step of causing a treatment agent to enter an exposed portion exposed in the exposure step of the resist film and causing metal to infiltrate the exposed portion via the treatment agent; and a resist film removing step of removing an unexposed portion not exposed in the exposure step of the resist film to form a resist pattern over the substrate.
Abstract:
To appropriately form a metal-containing film containing metal on a substrate, a method first forms an organic film on the substrate, and causes a treatment agent to enter the organic film and causes metal to infiltrate the organic film via the treatment agent, thereby forming the metal-containing film. The metal-containing film contains metal and thus has a high etching selection ratio that is originally required performance. This makes it possible to appropriately form the metal-containing film having a high etching selection ratio on the substrate.
Abstract:
A substrate treatment method for performing a treatment for forming a pattern through precursor formation and a condensation reaction of a metal-containing resist, includes: suppressing the precursor formation of a film of the metal-containing resist formed on a substrate on which exposure and a PEB treatment have been performed; and subsequent thereto, improving selectivity of the film by the condensation reaction in the film before the forming the pattern.
Abstract:
A technique which, in forming a resist pattern on a wafer, can achieve high resolution and high in-plane uniformity of pattern line width. After forming a resist film on a wafer W and subsequently performing pattern exposure by means of a pattern exposure apparatus, the entire pattern exposure area is exposed by using a flood exposure apparatus. During the flood exposure, the exposure amount is adjusted depending on the exposure position on the wafer based on information on the in-plane distribution of the line width of a resist pattern, previously obtained from an inspection apparatus. Methods for adjusting the exposure amount include a method which adjusts the exposure amount while moving a strip-shaped irradiation area corresponding to the diameter of the wafer, a method which involves intermittently moving an irradiation area, corresponding to a shot area in the preceding pattern exposure, to adjust the exposure amount for each chip.
Abstract:
In the present invention, a masking solution is supplied to an edge portion of a front surface of a substrate rotated around a vertical axis to form a masking film at the edge portion of the substrate, a hard mask solution is supplied to the front surface of the substrate to form a hard mask film on the front surface of the substrate, a hard mask film removing solution dissolving the hard mask film is supplied to the hard mask film formed at the edge portion of the substrate to remove the hard mask film formed at the edge portion of the substrate, and a masking film removing solution dissolving the masking film is supplied to the masking film to remove the masking film at the edge portion of the substrate.
Abstract:
A substrate processing method includes forming a metal oxide resist film on a substrate including an underlayer; forming a pattern in the metal oxide resist film; modifying the metal oxide resist film in which the pattern has been formed; and etching the underlayer by using the modified metal oxide resist film as a mask.
Abstract:
A heat-treating method of performing a heat treatment on a substrate on which a film of a metal-containing resist film is formed and which is subjected to an exposure treatment, includes an operation of heating the substrate for a predetermined period of time at a heating temperature at which a metal-containing sublimate is not generated from the film of the metal-containing resist, wherein during the operation of heating the substrate, a reactive fluid in which a concentration of at least one of a carbon dioxide or moisture is higher than a concentration in an atmosphere to promote a reaction within the film of the metal-containing resist, is supplied to a processing space around the substrate.