Abstract:
A method for thermally imaging a moving workpiece of a gas turbine engine using long wavelength infrared (LWIR) images of the workpiece captured during operation of the gas turbine engine. The method comprises determining average pixel intensity and pixel variation in intensity for each pixel across the plurality of LWIR images, determining average area intensity and area variation in intensity across a range of areas defined by increasing length scales about a selected pixel, and identifying as a critical length scale a length scale at which area variation in intensity is minimized as a function of length scale, for which the area intensity remains substantially the same as the average pixel intensity of the selected pixel. A composite image is built such that each pixel of the composite image has intensity equal to an average area intensity centered on that pixel, over the critical length scale.
Abstract:
A method for thermally imaging a moving workpiece of a gas turbine engine comprises identifying a plurality of geometric features to construct a composite image. The geometric features include at least one integral thermal feature of the moving workpiece, and at least one artificial feature applied to the workpiece for diagnostic purposes. One of the plurality of geometric features is identified as a master feature, and the remainder of the plurality of geometric features are located relative to the master feature with relative actual coordinates. A pixel location of the master feature is identified or each image, and the remainder of the plurality of geometric features are located relative to the master feature with relative pixel coordinates. Offset, rotation, and scaling of the secondary images are varied to minimize a relative difference between the relative pixel coordinates and the relative actual coordinates. The offset, rotated, and scaled secondary images are combined with the reference image to form a composite image.
Abstract:
A system includes a turbomachine having one or more inspection ports. An LWIR sensor is positioned in the inspection port of the turbomachine to sense thermal energy emitted by a turbomachine component. An imaging device can be operably connected to the LWIR sensor to convert signals from the LWIR sensor to a thermal image of the turbomachine component based on the sensed thermal energy. In some embodiments, the LWIR sensor configured to image a ceramic coated turbine blade.
Abstract:
A system and method for prognostic health monitoring of thermal barrier coatings is provided. The system may comprise monitoring a thermal barrier coated gas turbine engine component, and measuring the infrared radiation emitting from the component. The measured thermal radiation data may be analyzed and compared to known material thermal radiation data in order to determine the health of the thermal barrier coating. The compiled comparison results may be compared against a historical statistical study to then determine the overall health of the thermal barrier coating. The system may comprise generating a health monitoring alert in response to the health of the thermal barrier coating indicating an imminent failure.
Abstract:
An actively cooled turbine sensor assembly is designed to withstand post-combustion gas-path conditions of gas turbine engines. The housing forms part of a cooling system and includes an elongated tubular structure that may be inserted into the hot flow path. The distal end portion of the sensor assembly is contoured to minimize heat transfer. The housing also includes leading and trailing plenums for flowing cooling air through the housing and out through the distal end portion. Additional side cavities may also be provided for active cooling of the sensor and reducing possible heat conduction paths to the sensor.
Abstract:
An actively cooled turbine sensor assembly is designed to withstand post-combustion gas-path conditions of gas turbine engines. The housing forms part of a cooling system and includes an elongated tubular structure that may be inserted into the hot flow path. The distal end portion of the sensor assembly is contoured to minimize heat transfer. The housing also includes leading and trailing plenums for flowing cooling air through the housing and out through the distal end portion. Additional side cavities may also be provided for active cooling of the sensor and reducing possible heat conduction paths to the sensor.