Abstract:
A gas turbine engine includes a fan and a compressor section that is fluidly connected to the fan. The compressor includes a high pressure compressor and a low pressure compressor. A combustor is fluidly connected to the compressor section. A turbine section is fluidly connected to the combustor. The turbine section includes a high pressure turbine coupled to the high pressure compressor via a first shaft. A low pressure turbine is coupled to the low pressure compressor via a second shaft. A geared architecture interconnects between the second shaft and the fan. The gas turbine engine is a high bypass geared aircraft engine having a bypass ratio of greater than six (6). The low pressure turbine has a pressure ratio that is greater than 5, and the geared architecture includes a gear reduction ratio of greater than 2.5:1.
Abstract:
A system for modulating air flow in a gas turbine engine is provided. The system may include a seal wall comprising an opening, a seal door configured to slideably engage the seal wall, and an actuator configured to move the seal door over the opening. In various embodiments, the system may include a surface forward of the seal door. The seal door may be configured to seal a passage through the surface and the opening of the seal wall. A track may be disposed under the seal door. The track may comprise cobalt. Rollers may be coupled to the seal door with the rollers on the track. The seal door may comprise a nickel-chromium alloy. A sync ring may be coupled to the seal door. The actuator may be coupled through the sync ring to the seal door.
Abstract:
A gas turbine engine blade containment system is disclosed. The blade containment system may include a generally cylindrical casing being made of a first material, and a generally cylindrical ring being made of a second material coaxially surrounding the casing, at least some portion of the ring metallurgically bonded to the casing.
Abstract:
A gas turbine engine includes a containment ring to contain liberated compressor and turbine blades and blade fragments within a core assembly. The combination of a containment gap between the core case and the containment ring and a containment layer disposed in the gap helps dissipate the energy generated by loose body impacts on the core assembly. The containment layer deforms, deflects, and/or redirects the impact energy acting in a radial direction, thereby to improve containment.