Abstract:
The present disclosure relates to sealing systems for gas turbine engines. In one embodiment, a seal support structure for a gas turbine engine includes a seal support configured to retain a circumferential seal and an engine support configured for mounting the seal support structure to a gas turbine engine mount. The engine support includes at least one channel configured to provide radial movement of the seal support structure and circumferential retention of the seal support. Another embodiment is directed to a sealing system including a circumferential seal and seal support structure configured to provide radial movement.
Abstract:
A brush seal plate may comprise a flat ring with bristles protruding from an inner diameter of the flat ring. The brush seal plate may have a racetrack slot to allow the flat ring to move in a radial direction relative to a retention pin. The bristles may protrude from the inner diameter of the flat ring at an angle. A slot may be formed through the flat ring, and the slot may be angled. The flat ring may be circumferentially discontinuous. The flat ring may further comprise a retention opening configured to fix the flat ring in place relative to a retention pin.
Abstract:
A seal support structure is provided for a circumferential seal. In one embodiment, the seal support structure includes an engine support structure, a seal support, and a shoulder joining the engine support and seal support. The shoulder offsets the engine support from the seal support, and the shoulder and the seal support structure are configured to dampen vibration for the circumferential seal. The seal support structure may employ one or more dampening elements or materials to interoperate with a seal support structure to dampen vibration to a seal system.
Abstract:
Non-contacting dynamic seals having wave springs are disclosed herein. A non-contacting dynamic seal may have a shoe coupled to an outer ring by an inner beam and an outer beam. A wave spring may be located between the inner beam and the outer beam, between the shoe and the inner beam, or between the outer beam and the outer ring. The wave spring may damp vibrations in the inner beam and the outer beam.
Abstract:
A method of method of making an airfoil includes making a refractory metal core that defines an interior of the airfoil by a tomo-lithographic process, making a mold that defines an exterior of the airfoil, inserting the refractory metal core into the mold, and pouring an airfoil material between the refractory metal core and the mold to cast the airfoil.
Abstract:
A method of making a refractory metal core includes forming two layers of the core out of a material. The layers are bonded together to form a laminate master pattern, and a flexible mold is formed around the pattern. The pattern is removed from the flexible mold, and pulverulent refractory metal material is poured into the flexible mold. The pulverulent refractory metal material is sintered to form the refractory metal core.
Abstract:
A seal support structure is provided for a circumferential seal. In one embodiment, the seal support structure includes an engine support structure, a seal support, and a shoulder joining the engine support and seal support. The shoulder offsets the engine support from the seal support, and the shoulder and the seal support structure are configured to dampen vibration for the circumferential seal. The seal support structure may employ one or more dampening elements or materials to interoperate with a seal support structure to dampen vibration to a seal system.
Abstract:
A seal ring system is provided. The seal ring system comprises a segment defining a slot, a pedal along the slot, and an opening offset from the slot. A retention fastener may be disposed in the opening. A seal ring system is also provided comprising a first segment defining a first opening, a second segment defining a second opening, and a retention fastener extending through the first and second openings. The retention fastener configured to allow relative radial movement of the first segment and the second segment. A seal is further provided comprising a seal ring having a central axis, a petal extending radially inward with respect to the central axis of the seal ring, and a sealing disk axially proximate the seal ring. The sealing disk may have a seal shoe configured as a primary seal. The petal may extend toward the seal shoe.
Abstract:
Non-contacting dynamic seals having wave springs are disclosed herein. A non-contacting dynamic seal may have a shoe coupled to an outer ring by an inner beam and an outer beam. A wave spring may be located between the inner beam and the outer beam, between the shoe and the inner beam, or between the outer beam and the outer ring. The wave spring may damp vibrations in the inner beam and the outer beam.