Abstract:
Systems and methods for malware detection techniques, which detect malware by identifying the C&C communication between the malware and the remote host. In particular, the disclosed techniques distinguish between request-response transactions that carry C&C communication and request-response transactions of innocent traffic. Individual request-response transactions may be analyzed rather than entire flows, and fine-granularity features examined within the transactions. As such, these methods and systems are highly effective in distinguishing between malware C&C communication and innocent traffic, i.e., in detecting malware with high detection probability and few false alarms.
Abstract:
Systems and methods for malware detection techniques, which detect malware by identifying the C&C communication between the malware and the remote host. In particular, the disclosed techniques distinguish between request-response transactions that carry C&C communication and request-response transactions of innocent traffic. Individual request-response transactions may be analyzed rather than entire flows, and fine-granularity features examined within the transactions. As such, these methods and systems are highly effective in distinguishing between malware C&C communication and innocent traffic, i.e., in detecting malware with high detection probability and few false alarms.
Abstract:
Systems and methods for extracting user identifiers over encrypted communication traffic are provided herein. An example method includes monitoring multiple flows of communication traffic. A sequence of messages is then sent to a user in accordance with a first temporal pattern. A flow whose activity has a second temporal pattern that matches the first pattern is then identified among the monitored flows. The identified flow is then associated with the user.
Abstract:
Malware detection techniques that detect malware by identifying the C&C communication between the malware and the remote host, and distinguish between communication transactions that carry C&C communication and transactions of innocent traffic. The system distinguishes between malware transactions and innocent transactions using malware identification models, which it adapts using machine learning algorithms. However, the number and variety of malicious transactions that can be obtained from the protected network are often too limited for effectively training the machine learning algorithms. Therefore, the system obtains additional malicious transactions from another computer network that is known to be relatively rich in malicious activity. The system is thus able to adapt the malware identification models based on a large number of positive examples—The malicious transactions obtained from both the protected network and the infected network. As a result, the malware identification models are adapted with high speed and accuracy.
Abstract:
Methods and systems for automated generation of malicious traffic signatures, for use in Intrusion Detection Systems (IDS). A rule generation system formulates IDS rules based on traffic analysis results obtained from a network investigation system. The rule generation system then automatically configures the IDS to apply the rules. An analysis process in the network investigation system comprises one or more metadata filters that are indicative of malicious traffic. An operator of the rule generation system is provided with a user interface that is capable of displaying the network traffic filtered in accordance with such filters.
Abstract:
A system and method in which one or more probing transactions are performed by transferring respective amounts of a cryptocurrency to one or more cryptocurrency addresses. The system then monitors and ascertains communications traffic exchanged with one or more IP addresses and that at least one of the probing transactions was downloaded to a particular IP address. The system then generates an output that can indicate an association between a cryptocurrency address of interest and the particular IP address.
Abstract:
A traffic-monitoring system that monitors encrypted traffic exchanged between IP addresses used by devices and a network, and further receives the user-action details that are passed over the network. By correlating between the times at which the encrypted traffic is exchanged and the times at which the user-action details are received, the system associates the user-action details with the IP addresses. In particular, for each action specified in the user-action details, the system identifies one or more IP addresses that may be the source of the action. Based on the IP addresses, the system may identify one or more users who may have performed the action. The system may correlate between the respective action-times of the encrypted actions and the respective approximate action-times of the indicated actions. The system may hypothesize that the indicated action may correspond to one of the encrypted actions having these action-times.
Abstract:
Systems and methods for malware detection techniques, which detect malware by identifying the C&C communication between the malware and the remote host. In particular, the disclosed techniques distinguish between request-response transactions that carry C&C communication and request-response transactions of innocent traffic. Individual request-response transactions may be analyzed rather than entire flows, and fine-granularity features examined within the transactions. As such, these methods and systems are highly effective in distinguishing between malware C&C communication and innocent traffic, i.e., in detecting malware with high detection probability and few false alarms.
Abstract:
A system and method in which one or more probing transactions are performed by transferring respective amounts of a cryptocurrency to one or more cryptocurrency addresses. The system then monitors and ascertains communications traffic exchanged with one or more IP addresses and that at least one of the probing transactions was downloaded to a particular IP address. The system then generates an output that can indicate an association between a cryptocurrency address of interest and the particular IP address.
Abstract:
Methods and systems for analyzing flows of communication packets. A front-end processor associates input packets with flows and forwards each flow to the appropriate unit, typically by querying a flow table that holds a respective classification for each active flow. In general, flows that are not yet classified are forwarded to the classification unit, and the resulting classification is entered in the flow table. Flows that are classified as requested for further analysis are forwarded to an appropriate flow analysis unit. Flows that are classified as not requested for analysis are not subjected to further processing, e.g., discarded or allowed to pass.