Abstract:
The quality of a multicast broadcast that is being received by a mobile device may be determined. In one implementation, a method may include receiving a radio signal corresponding to a multicast broadcast of content; measuring a strength of the received signal; determining a minimum signal strength to receive the content associated with the multicast broadcast; determining a signal quality metric, associated with the multicast broadcast, the signal quality metric being based on a difference between the measured strength of the signal and the determined minimum signal strength; and providing a visual indication of the signal quality metric.
Abstract:
A network device receives parameters associated with a usage profile of at least one Internet of Things (IoT) device, where the usage profile specifies a data usage pattern associated with the at least one IoT device transmitting or receiving data via a wireless network. The network device generates a device behavior profile based on the parameters associated with the usage profile, and causes the device behavior profile and an application to be sent to the at least one IoT device, where the application controls the at least one IoT device's transmission or reception via the wireless network using the device behavior profile.
Abstract:
A user equipment (UE) may receive, from a certificate authority, a first onboarding identifier associated with a private key stored on the UE. The UE may transmit, to a wireless network, an attach request based on the first onboarding identifier. The UE may receive, from the wireless network, a signaling message that includes a second onboarding identifier, wherein the signaling message may be encrypted with a public key paired with the private key stored on the UE. The UE may decrypt the signaling message using the private key stored on the UE to obtain the second onboarding identifier. The UE may obtain a permanent identifier from a Remote SIM Provisioning platform based on the UE completing an authentication procedure using an authentication response obtained from the decrypted signaling message. The UE may then connect to the wireless network using the permanent identifier.
Abstract:
A device may receive signal information associated with a wireless signal or charge information associated with a charge level. The signal information may indicate a signal strength of the wireless signal. The charge information may indicate the charge level of a battery of the device. The device may determine whether the signal strength or the charge level satisfies a threshold. The device may configure a parameter or a setting of the device to cause the device to operate according to a long term evolution (LTE) category based on determining whether the signal strength or the charge level satisfies the threshold. The LTE category may be different from a default LTE category of the device and may define an uplink/downlink capability specification. The device may attach to a network in association with configuring the parameter or the setting to cause the device to operate according to the LTE category.
Abstract:
Systems and methods enable remote machine-to-machine device SIM profile management without requiring a mobile terminated SMS wake-up message. A network device stores multiple profile orders for secure elements of end devices and receives an unsolicited profile query from a secure element of an end device. The secure element includes a pre-loaded power-on connection application that automatically initiates an HTTP connection with the network device when the end device is powered on or wakes up from a sleep mode, and the unsolicited profile query includes a secure element identifier. The network device conducts a search to match the secure element identifier from the unsolicited profile query with one of the multiple profile orders for the secure elements and sends profile action instructions to the secure element when there is a match between the secure element identifier from the unsolicited profile query and the one of the multiple profile orders.
Abstract:
A method for signaling and call continuity for coverage enhancement may include selecting a cell while a user equipment (UE) device is in a radio resource control (RRC) idle state, determining if a signal level from an evolved NodeB (eNodeB) associated with the cell is sufficient for normal coverage, exchanging data with a network in a normal UE device mode via the cell upon determining that the signal level is sufficient for normal coverage, determining if a signal level from the eNodeB associated with the cell is sufficient for enhanced coverage upon determining that the signal level is not sufficient for normal coverage, and exchanging data with the network in an enhanced UE device mode via the cell upon determining that the signal level is sufficient for enhanced coverage.
Abstract:
A network device receives parameters associated with a usage profile of at least one Internet of Things (IoT) device, where the usage profile specifies a data usage pattern associated with the at least one IoT device transmitting or receiving data via a wireless network. The network device generates a device behavior profile based on the parameters associated with the usage profile, and causes the device behavior profile and an application to be sent to the at least one IoT device, where the application controls the at least one IoT device's transmission or reception via the wireless network using the device behavior profile.
Abstract:
A device may receive signal information associated with a wireless signal or charge information associated with a charge level. The signal information may indicate a signal strength of the wireless signal. The charge information may indicate the charge level of a battery of the device. The device may determine whether the signal strength or the charge level satisfies a threshold. The device may configure a parameter or a setting of the device to cause the device to operate according to a long term evolution (LTE) category based on determining whether the signal strength or the charge level satisfies the threshold. The LTE category may be different from a default LTE category of the device and may define an uplink/downlink capability specification. The device may attach to a network in association with configuring the parameter or the setting to cause the device to operate according to the LTE category.
Abstract:
In some implementations, a device that includes an embedded universal integrated circuit card (eUICC) may enable a first subscriber identity module (SIM) profile. The first SIM profile may be installed in memory of the eUICC and associated with a first integrated circuit card identifier (ICCID). The device may request a second SIM profile based on enabling the first SIM profile. The second SIM profile may be associated with a second ICCID that is different from the first ICCID. The device may receive the second SIM profile based on requesting the second SIM profile, and may install the second SIM profile in memory of the eUICC in a disabled state. Other implementations are described herein.
Abstract:
An embedded Universal Integrated Circuit Card (“eUICC”) controller may transfer wireless network service between different User Equipment (“UE”) by moving or exchanging one or more profiles between the eUICC of different UEs. The eUICC controller may directly access the eUICC of the UEs in order to control eUICC profile synchronization, disabling, downloading, and/or perform other eUICC management.