Abstract:
The invention comprises intensity control of a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Particularly, intensity of a charged particle stream of a synchrotron is described. Intensity control is described in combination with turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements of the synchrotron. The system reduces the overall size of the synchrotron, provides a tightly controlled proton beam, directly reduces the size of required magnetic fields, directly reduces required operating power, and allows continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Abstract:
The invention comprises a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, flat surface incident magnetic field surfaces, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Abstract:
The invention comprises a charged particle beam acceleration and/or extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Abstract:
The invention comprises a charged particle beam extraction method and apparatus optionally used in conjunction with charged particle beam radiation therapy of cancerous tumors. The system uses a radio-frequency (RF) cavity system to induce oscillation of a charged particle stream. Sufficient amplitude modulation of the charged particle stream causes the charged particle stream to hit a material, such as a foil element of a set of foils. The foil decreases the energy of the charged particle stream, which decreases a radius of curvature of the charged particle stream in the synchrotron sufficiently to allow a physical separation of the reduced energy charged particle stream from the original charged particle stream where thickness of a selected foil is a function of energy of circulating charged particles. The physically separated charged particle stream is then removed from the system by use of an applied field and deflector.
Abstract:
The invention relates to method and apparatus for treatment of solid cancer. More particularly, the invention comprises a multi-axis and/or multi-field charged particle cancer therapy system. The system independently controls patient translation position, patient rotation position, two-dimensional beam trajectory, delivered beam energy, delivered beam intensity, timing of charged particle delivery, and/or distribution of radiation striking healthy tissue. The system operates in conjunction with a negative ion beam source, synchrotron, patient positioning, imaging, and/or targeting method and apparatus to deliver an effective and uniform dose of radiation to a tumor while distributing radiation striking healthy tissue.
Abstract:
The invention relates to treatment of solid cancers. More particularly, the invention relates to a combined rotation/raster method, referred to as multi-field charged particle cancer therapy. The system uses a fixed orientation proton source relative to a rotating patient to yield tumor irradiation from multiple directions. The system combines layer-wise tumor irradiation from many directions with controlled energy proton irradiation to deliver peak proton beam energy within a selected tumor volume or irradiated slice. Optionally, the selected tumor volume for irradiation from a given angle is a distal portion of the tumor. In this manner ingress Bragg peak energy is circumferentially spread about the tumor minimizing damage to healthy tissue and peak proton energy is efficiently, accurately, and precisely delivered to the tumor.
Abstract:
The invention comprises a negative ion source method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The negative ion source preferably includes an inlet port for injection of hydrogen gas into a high temperature plasma chamber. In one embodiment, the plasma chamber includes a magnetic material, which provides a magnetic field barrier between the high temperature plasma chamber and a low temperature plasma region on the opposite side of the magnetic field barrier. An extraction pulse is applied to a negative ion extraction electrode to pull the negative ion beam into a negative ion beam path, which proceeds through a first partial vacuum system, through an ion beam focusing system, into the tandem accelerator, and into a synchrotron.
Abstract:
The invention comprises a semi-vertical patient positioning, alignment, and/or control method and apparatus used in conjunction with charged particle or proton beam radiation therapy of cancerous tumors. Patient positioning constraints are used to maintain the patient in a treatment position, including one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are movable and/or under computer control for rapid positioning and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and/or in system verification and validation.
Abstract:
The invention comprises intensity control of a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Particularly, intensity of a charged particle stream of a synchrotron is described. Intensity control is described in combination with turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements of the synchrotron. The system reduces the overall size of the synchrotron, provides a tightly controlled proton beam, directly reduces the size of required magnetic fields, directly reduces required operating power, and allows continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Abstract:
The invention comprises a semi-vertical or seated patient positioning, alignment, and/or control method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. Patient positioning constraints are used to maintain the patient in a treatment position, including one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are movable and/or under computer control for rapid positioning and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and/or in system verification and validation.