Abstract:
A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.
Abstract:
A refrigeration unit includes a cabinet and a first evaporator assembly. The first evaporator assembly is operable between an uninstalled condition and an installed condition. In the uninstalled condition, the first evaporator assembly is not assembled with the cabinet. In the installed condition, the first evaporator assembly is assembled with the cabinet. The first evaporator assembly includes a first evaporator, a first suction line connected to the first evaporator at a first suction line joint, and a first capillary tube connected to the first evaporator at a first capillary tube joint. The first suction line joint and the first capillary tube joint of the first evaporator assembly are leak testable in the uninstalled condition of the first evaporator assembly.
Abstract:
A method of measuring pressure includes the steps of (1) providing a vacuum cabinet with a storage compartment and an insulating space, and three temperature sensors; (2) sensing a first temperature level of an interior wall of the storage compartment; (3) sensing an ambient temperature level within the storage compartment; (4) sensing a second temperature level of an exterior wall of the storage compartment; (5) calculating an overall heat transfer coefficient (Q) using the ambient temperature level, the first temperature level, and a convective heat transfer coefficient for the interior wall of the storage compartment; (6) calculating a temperature differential between the second and first temperature levels; (7) determining a conductivity level (K) using the temperature differential, the overall heat transfer coefficient (Q) and a thickness of the insulating space; and (8) determining a pressure level (P) within the insulating space using the conductivity level (K).
Abstract:
A method of assembling a refrigeration unit includes inserting a machine compartment assembly, including a base plate and a compressor coupled to the base plate, into a machine compartment of the refrigeration unit, mounting a control box of the refrigeration unit to a side panel, and coupling the side panel to the refrigeration unit, such that the side panel conceals a lateral side of the machine compartment and the control box is laterally-inboard of the side panel.
Abstract:
A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identified if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.
Abstract:
A refrigeration system including a condenser; a (single) linear compressor that is activated and deactivated by a pulse width modulation switching device; a pulse width modulation refrigerant flow switch; at least two evaporators operably connected in parallel with one another with at least one evaporator associated with the refrigerator compartment that operates at a first refrigerant fluid pressure and with at least one other evaporator associated with the freezer compartment that operates at a second refrigerant fluid pressure; and a plurality of refrigerant fluid conduits operably connecting the condenser, the linear compressor and the evaporators into a refrigerant fluid flow circuit and such that the evaporators are capable of running simultaneously at different pressure levels and refrigerant flows from the evaporators, to the pulse width modulation refrigerant flow switch and through the pulse width modulation refrigerant flow switch.
Abstract:
A refrigeration system including a condenser; a (single) linear compressor that is activated and deactivated by a pulse width modulation switching device; a pulse width modulation refrigerant flow switch; at least two evaporators operably connected in parallel with one another with at least one evaporator associated with the refrigerator compartment that operates at a first refrigerant fluid pressure and with at least one other evaporator associated with the freezer compartment that operates at a second refrigerant fluid pressure; and a plurality of refrigerant fluid conduits operably connecting the condenser, the linear compressor and the evaporators into a refrigerant fluid flow circuit and such that the evaporators are capable of running simultaneously at different pressure levels and refrigerant flows from the evaporators, to the pulse width modulation refrigerant flow switch and through the pulse width modulation refrigerant flow switch.
Abstract:
A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identified if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.
Abstract:
Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.
Abstract:
A method of determining a time delay for turning off an evaporator fan in a refrigerator after a compressor of the refrigerator is turned off includes operating the evaporator fan in the refrigerator for a period of time, operating the compressor of the refrigerator to cool the refrigerator to a predetermined temperature after turning off the evaporator fan, determining a power consumption value for operating the compressor to cool the refrigerator, repeating the previous steps to obtain a plurality of times and a plurality of power consumption values, selecting the time coinciding with a lowest power consumption value, and adapting the refrigerator to use the time as the time delay for turning off the evaporator fan in the refrigerator after the compressor of the refrigerator is turned off.