LEARNING POINT CLOUD AUGMENTATION POLICIES

    公开(公告)号:US20210334651A1

    公开(公告)日:2021-10-28

    申请号:US17194115

    申请日:2021-03-05

    Applicant: Waymo LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to perform a machine learning task by processing input data to the model. For example, the input data can include image, video, or point cloud data, and the task can be a perception task such as classification or detection task. In one aspect, the method includes receiving training data including a plurality of training inputs; receiving a plurality of data augmentation policy parameters that define different transformation operations for transforming training inputs before the training inputs are used to train the machine learning model; maintaining a plurality of candidate machine learning models; for each of the plurality of candidate machine learning models: repeatedly determining an augmented batch of training data; training the candidate machine learning model using the augmented batch of the training data; and updating the maintained data.

    Classifying objects using recurrent neural network and classifier neural network subsystems

    公开(公告)号:US11093819B1

    公开(公告)日:2021-08-17

    申请号:US15381389

    申请日:2016-12-16

    Applicant: Waymo LLC

    Abstract: Disclosed herein are neural networks for generating target classifications for an object from a set of input sequences. Each input sequence includes a respective input at each of multiple time steps, and each input sequence corresponds to a different sensing subsystem of multiple sensing subsystems. For each time step in the multiple time steps and for each input sequence in the set of input sequences, a respective feature representation is generated for the input sequence by processing the respective input from the input sequence at the time step using a respective encoder recurrent neural network (RNN) subsystem for the sensing subsystem that corresponds to the input sequence. For each time step in at least a subset of the multiple time steps, the respective feature representations are processed using a classification neural network subsystem to select a respective target classification for the object at the time step.

    PHRASE RECOGNITION MODEL FOR AUTONOMOUS VEHICLES

    公开(公告)号:US20210192238A1

    公开(公告)日:2021-06-24

    申请号:US17123185

    申请日:2020-12-16

    Applicant: WAYMO LLC

    Abstract: Aspects of the disclosure relate to training and using a phrase recognition model to identify phrases in images. As an example, a selected phrase list may include a plurality of phrases is received. Each phrase of the plurality of phrases includes text. An initial plurality of images may be received. A training image set may be selected from the initial plurality of images by identifying the phrase-containing images that include one or more phrases from the selected phrase list. Each given phrase-containing image of the training image set may be labeled with information identifying the one or more phrases from the selected phrase list included in the given phrase-containing images. The model may be trained based on the training image set such that the model is configured to, in response to receiving an input image, output data indicating whether a phrase of the plurality of phrases is included in the input image.

    Vehicle Intent Prediction Neural Network

    公开(公告)号:US20210191395A1

    公开(公告)日:2021-06-24

    申请号:US16723787

    申请日:2019-12-20

    Applicant: Waymo LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating vehicle intent predictions using a neural network. One of the methods includes obtaining an input characterizing one or more vehicles in an environment; generating, from the input, features of each of the vehicles; and for each of the vehicles: processing the features of the vehicle using each of a plurality of intent-specific neural networks, wherein each of the intent-specific neural networks corresponds to a respective intent from a set of intents, and wherein each intent-specific neural network is configured to process the features of the vehicle to generate an output for the corresponding intent.

    Vehicle heading prediction neural network

    公开(公告)号:US10366502B1

    公开(公告)日:2019-07-30

    申请号:US15374884

    申请日:2016-12-09

    Applicant: Waymo LLC

    Inventor: Congcong Li

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating vehicle heading predictions from point cloud data using a neural network. One of the methods includes receiving a plurality of different projections of point cloud data, wherein the point cloud data represents different sensor measurements of electromagnetic radiation reflected off a vehicle. Each of the plurality of projections of point cloud data is provided as input to a neural network subsystem trained to receive projections of point cloud data for a vehicle and to generate one or more vehicle heading classifications as an output. At the output of the neural network subsystem, one or more vehicle heading predictions is received.

    Object classification using extra-regional context

    公开(公告)号:US11783568B2

    公开(公告)日:2023-10-10

    申请号:US17224763

    申请日:2021-04-07

    Applicant: Waymo LLC

    Abstract: Some aspects of the subject matter disclosed herein include a system implemented on one or more data processing apparatuses. The system can include an interface configured to obtain, from one or more sensor subsystems, sensor data describing an environment of a vehicle, and to generate, using the sensor data, (i) one or more first neural network inputs representing sensor measurements for a particular object in the environment and (ii) a second neural network input representing sensor measurements for at least a portion of the environment that encompasses the particular object and additional portions of the environment that are not represented by the one or more first neural network inputs; and a convolutional neural network configured to process the second neural network input to generate an output, the output including a plurality of feature vectors that each correspond to a different one a plurality of regions of the environment.

Patent Agency Ranking