摘要:
Techniques for identifying irregular objects in contact with, or in close proximity to, a touch-surface are described. An irregularity measure is determined based on the regions intrinsic characteristics (e.g., energy content) rather than on the shape (or pattern) of the pixels within the region.
摘要:
The selective rejection of touch contacts in an edge region of a touch sensor panel is disclosed. In addition, by providing certain exceptions to the rejection of edge contacts, the functionality of the touch sensor panel can be maximized. Contacts in edge bands around the perimeter of a touch sensor panel can be ignored. However, if a contact in the edge band moves beyond a threshold distance or speed, it can be recognized as part of a gesture. To accommodate different finger sizes, the size of the edge band can be modified based on the identification of the finger or thumb. Furthermore, if contacts in the center region of a touch sensor panel track the movement of contacts in the edge band, the contacts in the edge band can be recognized as part of a gesture.
摘要:
Embodiments are related to user input devices that accept complex user input including a combination of touch and push (or pick) input. Embodiments of the invention provide for selective ignoring or rejection of input received from such devices in order to avoid interpreting unintentional user actions as commands. Furthermore, some input signals can be modified. The selective rejection or modification can be performed by the user interface device itself or by a computing device that includes or is attached to the user interface device. The selective rejection or modification may be performed by a module that processes input signals, performs the necessary rejections and modifications and sends revised input signals to higher level modules.
摘要:
Selection of input of a touch sensing surface is provided. Contacts on or near a surface are tracked to obtain touch information of the contacts. A first gesture is detected corresponding to first touch information of a number of contacts performing an activity, and a first input corresponding to the first gesture is selected. A second gesture is detected corresponding to second touch information of a number of contacts performing an activity. A determination of whether to select a second input corresponding to the second gesture is made. The second input is selected if third information satisfies a predetermined criteria, and the first input is maintained if the third information does not satisfy the predetermined criteria.
摘要:
The application of a watershed algorithm to pixels and their touch values obtained from a scan of a touch sensor panel to determine patches corresponding to images of touch is disclosed. Prior to applying the watershed algorithm, background pixels having little or no touch values can be eliminated. A primary merge algorithm can then merge adjacent patches together when the saddle point between them is shallow as compared to the peak represented by the patches. However, if two candidate patches for merging have a total number of pixels below a certain threshold, these two patches may not be merged under the assumption that the patches might have been caused by different fingertips. Conversely, if two candidate patches for merging have a total number of pixels above a certain threshold, these two patches can be merged under the assumption that the patches were caused by a single thumb or palm.
摘要:
Techniques for identifying and discriminating between different types of contacts to a multi-touch touch-screen device are described. Illustrative contact types include fingertips, thumbs, palms and cheeks. By way of example, thumb contacts may be distinguished from fingertip contacts using a patch eccentricity parameter. In addition, by non-linearly deemphasizing pixels in a touch-surface image, a reliable means of distinguishing between large objects (e.g., palms) from smaller objects (e.g., fingertips, thumbs and a stylus) is described.
摘要:
One or more multi-touch skins can placed along three dimensions of an object. The one or more multi-touch skins enable multi-touch inputs during the operation of the object. The multi-touch inputs can be tracked to monitor the operation of the object and provide feedback to the operator of the object. The one or more multi-touch skins can further enable gestures for configuring and operating the object. The one or more multi-touch skins can also be used to implement any number of GUI interface objects and actions. A multi-touch skin that measures the force of a touch in one or more directions is also provided.
摘要:
The application of a watershed algorithm to pixels and their touch values obtained from a scan of a touch sensor panel to determine patches corresponding to images of touch is disclosed. Prior to applying the watershed algorithm, background pixels having little or no touch values can be eliminated. A primary merge algorithm can then merge adjacent patches together when the saddle point between them is shallow as compared to the peak represented by the patches. However, if two candidate patches for merging have a total number of pixels below a certain threshold, these two patches may not be merged under the assumption that the patches might have been caused by different fingertips. Conversely, if two candidate patches for merging have a total number of pixels above a certain threshold, these two patches can be merged under the assumption that the patches were caused by a single thumb or palm.
摘要:
Techniques for identifying and discriminating between different input patterns to a multi-touch touch-screen device are described. By way of example, large objects hovering a short distance from the touch-surface (e.g., a cheek, thigh or chest) may be identified and distinguished from physical contacts to the surface. In addition, rough contacts due to, for example, ears and earlobes, may be similarly identified and distinguished from contacts due to fingers, thumbs, palms and finger clasps.
摘要:
Negative pixel compensation in a touch sensor panel is disclosed. The panel can compensate for a negative pixel effect in touch signal outputs due to poor grounding of an object touching the panel. To do so, the panel can reconstruct a captured touch image to remove negative pixel values indicative of the negative pixel effect and compute a composite image from the captured image and the reconstructed image to replace the captured image. In addition or alternatively, the panel can reconstruct a captured touch image to remove negative pixel values indicative of the negative pixel effect and replace the captured image with the reconstructed image.