Abstract:
Methods for diagnosing propensity to exhibit acquired peripheral neuropathy in dogs are described. The methods and kits test dogs for presence of a disease-associated genomic variant. Presence of the genomic variant indicates an increased likelihood of the dog developing an acquired peripheral neuropathy. This information can be used to guide preemptive clinical treatment of the animal for peripheral neuropathy and to choose dogs for selective breeding programs.
Abstract:
Method and kits for diagnosing propensity to non-contact cranial cruciate ligament rupture (CCLR) in a dog are described. The method includes isolating genomic DNA from a dog and then analyzing the genomic DNA from step for a single nucleotide polymorphism occurring in selected loci that have been determined to be associated with the CCLR phenotype via a genome-wide association study.
Abstract:
Methods for diagnosing propensity to exhibit acquired peripheral neuropathy in dogs are described. The methods and kits test dogs for presence of a disease-associated genomic variant. Presence of the genomic variant indicates an increased likelihood of the dog developing an acquired peripheral neuropathy. This information can be used to guide preemptive clinical treatment of the animal for peripheral neuropathy and to choose dogs for selective breeding programs.
Abstract:
Method and kits for diagnosing propensity to non-contact cranial cruciate ligament rupture (CCLR) in a dog are described. The method includes isolating genomic DNA from a dog and then analyzing the genomic DNA from step for a single nucleotide polymorphism occurring in selected loci that have been determined to be associated with the CCLR phenotype via a genome-wide association study.
Abstract:
Method and kits for diagnosing propensity to non-contact cranial cruciate ligament rupture (CCLR) in a dog are described. The method includes isolating genomic DNA from a dog and then analyzing the genomic DNA from step for a single nucleotide polymorphism occurring in selected loci that have been determined to be associated with the CCLR phenotype via a genome-wide association study.