Abstract:
Provided is a laser device. In the laser device, an active layer is connected to a stem core of a 1×2 splitter on a substrate, a first diffraction grating is coupled to a first twig core of the 1×2 splitter, and a second diffraction grating is coupled to a second twig core of the 1×2 splitter. An active layer-micro heater is designed to supply heat to the active layer. First and second micro heaters are designed to supply heats to the first and second diffraction gratings, respectively, thereby varying a Bragg wavelength.
Abstract:
Provided is a multiple distributed feedback laser device. The laser device includes an active layer, a first diffraction grating, and a second diffraction grating. The substrate includes a first distributed feedback region, a modulation region, and a second distributed feedback region. The first diffraction grating is coupled to the active layer in the first distributed feedback region. The second diffraction grating is coupled to the active layer in the second distributed feedback region. In addition, the laser device includes a first micro heater and a second micro heater. The first micro heater supplies heat to the first diffraction grating. The second micro heater supplies heat to the second diffraction grating. The first micro heater and the second micro heater are controlled independently from each other.
Abstract:
Provided is a multiple distributed feedback laser device which includes a first distributed feedback region, a modulation region, a second distributed feedback region, and an amplification region. An active layer is disposed on the substrate of the first distributed feedback region, the modulation region, the second distributed feedback region, and the amplification region. A first diffraction grating is disposed in the first distributed feedback region to be coupled to the active layer in the first distributed feedback region. A second diffraction grating is disposed in the second distributed feedback region to be coupled to the active layer in the second distributed feedback region. The multiple distributed feedback laser device further includes a first micro heater configured to supply heat to the first diffraction grating and a second micro heater configured to supply heat to the second diffraction grating.
Abstract:
Provided is a multiple distributed feedback laser device which includes a first distributed feedback region, a modulation region, a second distributed feedback region, and an amplification region. An active layer is disposed on the substrate of the first distributed feedback region, the modulation region, the second distributed feedback region, and the amplification region. A first diffraction grating is disposed in the first distributed feedback region to be coupled to the active layer in the first distributed feedback region. A second diffraction grating is disposed in the second distributed feedback region to be coupled to the active layer in the second distributed feedback region. The multiple distributed feedback laser device further includes a first micro heater configured to supply heat to the first diffraction grating and a second micro heater configured to supply heat to the second diffraction grating.
Abstract:
Provided is a resonant reflective filter including a substrate and a grating layer, wherein the substrate is formed of a material having a lower reflective index than that of a material forming the grating layer. Thus, the resonant reflective filter can form a resonant spectrum having good symmetry and a sharp shape. Accordingly, the resonant reflective filter can have improved sensitivity and can be applied to optical systems that require a small linewidth.