Spatial light modulator and light-emitting device

    公开(公告)号:US12051883B2

    公开(公告)日:2024-07-30

    申请号:US17787976

    申请日:2020-12-23

    摘要: This disclosure relates to a spatial light modulator, etc., the spatial light modulator being capable of dynamically controlling the phase distribution of light, and provided with a structure having a smaller pixel arrangement period and suitable for high-speed operation. The spatial light modulator includes a substrate. The substrate has a front surface, a back surface, and through-holes arranged one-dimensionally or two-dimensionally and penetrating between the front surface and the back surface. The spatial light modulator further includes layered structures each covering the inner walls of the through-holes. Each layered structure includes a first electroconductive layer on the inner wall, a dielectric layer on the first electroconductive layer and having optical transparency, and a second electroconductive layer on the dielectric layer and having optical transparency. At least one of the first and second electroconductive layers is electrically isolated for each group including one or more through-holes.

    INTEGRATED PHOTONIC APPARATUS AND METHOD
    8.
    发明公开

    公开(公告)号:US20230387666A1

    公开(公告)日:2023-11-30

    申请号:US18321086

    申请日:2023-05-22

    申请人: Xuan Sun

    发明人: Xuan Sun

    摘要: A fully integrated photonic coherent microwave generator includes an external laser cavity on a suitable material waveguide platform (e.g., LiNbO3) operationally integrated with a III-V gain element. Operational components include a tunable high-Q resonator (e.g., LiNbO3 microresonator) and one or more end mirrors to form an integrated semiconductor external-cavity laser. Operationally coupled electrical components enable coherent microwave and phase-locked laser comb outputs as follows. An optical detector converts the beating of generated laser-comb modes into microwaves with a fundamental frequency equal to the free-spectral range fR of the microresonator. The external laser cavity enables high-speed electro-optic modulation of laser modes directly inside the laser cavity. Phase locking of the lasing modes is accomplished via electro-optic modulation and electro-optic comb generation directly inside the laser cavity. Highly coherent microwaves are generated via phase-locked comb-like lasing modes.