Abstract:
Methods and systems for recommending one or more computational resources. A portion of computational resources is determined from a set of computational resources associated with a datacenter based on a user-profile associated with a user, from one or more users, and the set of computational resources. The user-profile comprises at least one of a required performance level, a required load, or a cost constraint. The one or more computational resources are recommended from the portion of computational resources, in response to requests received from the one or more users.
Abstract:
Methods and systems are disclosed for providing cloud services to multiple customers in a cloud. One embodiment includes receiving a number of requests for the cloud services from the multiple customers simultaneously or substantially simultaneously; prioritizing the requests based on a probability distribution of actually deploying a service, a budget of the customers, and an expected demand of the requested service based on the probability distribution; generating a number of cloud configurations along with a number of Service Level Agreements (SLAs) for the customers based on prioritization of the requests, a class & past behavior of the customers, and a current demand of the cloud services, the SLAs of the customers include differentiated price offering; recommending the cloud configurations and the SLAs to the customers; allowing the customers to negotiate terms of the SLAs; and providing the cloud services based on the negotiated SLAs to the customers.
Abstract:
A method, non-transitory computer readable medium, and apparatus for adapting resources of the cluster of nodes for a real-time streaming workflow are disclosed. For example, the method receives a notification that a node of the cluster of nodes associated with an instance of a process of the real-time streaming workflow is predicted to be a bottleneck, identifies a number of hops to send a resource statement when the bottleneck is predicted that minimizes a ripple effect associated with transmitting the resource statement, transmits the resource statement to at least one or more nodes of the cluster of nodes within the number of hops, receives a response from one of the at least one or more nodes within the cluster of nodes and adapts a resource usage to the at least one of the one or more nodes within the cluster of nodes that the response was received from.
Abstract:
Methods and systems for recommending one or more computational resources. A portion of computational resources is determined from a set of computational resources associated with a datacenter based on a user-profile associated with a user, from one or more users, and the set of computational resources. The user-profile comprises at least one of a required performance level, a required load, or a cost constraint. The one or more computational resources are recommended from the portion of computational resources, in response to requests received from the one or more users.
Abstract:
A method, non-transitory computer readable medium, and apparatus for estimating a completion time for a MapReduce job are disclosed. For example, the method builds a general MapReduce performance model, computes one or more performance characteristics of each one of one or more benchmark workloads, computes one or more performance characteristics of the MapReduce job in the known processing system, selects a subset of the one or more benchmark workloads that have similar performance characteristics as the one or more performance characteristics of the MapReduce job, targets a cluster of processing nodes in a distributed processing system, computes one or more performance characteristics of the subset of the one or more benchmark workloads in the cluster of processing nodes and estimates the completion time for the MapReduce job.
Abstract:
Methods and systems are disclosed for providing cloud services to multiple customers in a cloud. One embodiment includes receiving a number of requests for the cloud services from the multiple customers simultaneously or substantially simultaneously; prioritizing the requests based on a probability distribution of actually deploying a service, a budget of the customers, and an expected demand of the requested service based on the probability distribution; generating a number of cloud configurations along with a number of Service Level Agreements (SLAs) for the customers based on prioritization of the requests, a class & past behavior of the customers, and a current demand of the cloud services, the SLAs of the customers include differentiated price offering; recommending the cloud configurations and the SLAs to the customers; allowing the customers to negotiate terms of the SLAs; and providing the cloud services based on the negotiated SLAs to the customers.
Abstract:
A method, non-transitory computer readable medium, and apparatus for adapting resources of the cluster of nodes for a real-time streaming workflow are disclosed. For example, the method receives a notification that a node of the cluster of nodes associated with an instance of a process of the real-time streaming workflow is predicted to be a bottleneck, identifies a number of hops to send a resource statement when the bottleneck is predicted that minimizes a ripple effect associated with transmitting the resource statement, transmits the resource statement to at least one or more nodes of the cluster of nodes within the number of hops, receives a response from one of the at least one or more nodes within the cluster of nodes and adapts a resource usage to the at least one of the one or more nodes within the cluster of nodes that the response was received from.
Abstract:
A method, non-transitory computer readable medium, and apparatus for estimating a completion time for a MapReduce job are disclosed. For example, the method builds a general MapReduce performance model, computes one or more performance characteristics of each one of one or more benchmark workloads, computes one or more performance characteristics of the MapReduce job in the known processing system, selects a subset of the one or more benchmark workloads that have similar performance characteristics as the one or more performance characteristics of the MapReduce job, targets a cluster of processing nodes in a distributed processing system, computes one or more performance characteristics of the subset of the one or more benchmark workloads in the cluster of processing nodes and estimates the completion time for the MapReduce job.
Abstract:
A method provides a recommendation for a cloud configuration for deploying a service. In response to receiving a service request, a database is searched for a cloud configuration. The search is performed by acquiring a resource usage pattern for the service. The resource usage pattern is mapped to a multidimensional space, which is searched for a previously deployed cloud configuration having a similar resource usage pattern. In response to finding a previously deployed cloud configuration, the activity management is determined for the previously deployed cloud configuration. A recommendation is made based on the activity management.
Abstract:
The disclosed embodiments relate to systems and methods for method and systems for sub-allocating computational resources. A first computing device receives information associated with a first set of computational resources from a cloud infrastructure. The first set of computational resources has been allocated to the first computing device by the cloud infrastructure. A first set of parameters associated with a workflow received by the first computing device is determined. The first set of parameters is indicative of a need of the first set of computational resources by the first computing device. One or more computational resources from the first set of computational resources are sub-allocated based on the determined first set of parameters.