Abstract:
A multi-task learning system and method for predicting travel demand on an associated transportation network are provided. Observations corresponding to the associated transportation network are collected and a set of time series corresponding to travel demand are generated. Clusters of time series are then formed and for each cluster, multi-task learning is applied to generate a prediction model. Travel demand on a selected segment of the associated transportation network corresponding to at least one of the set of time series is then predicted in accordance with the generated prediction model.
Abstract:
A method and system are disclosed for re-ranking trips from a journey planner using real traveler preferences. A trip request is received that includes an origin, a destination and a departure time. An associated journey planner retrieves a list of candidate trips that correspond to the request. A ranking function, ascertained from actual trips that match the trip request and from which are determined real-world traveler preferences, is applied to the list of candidate trips output by the journey planner, thereby re-ranking the list of candidate trips to reflect real-world traveler's experiences.
Abstract:
A classification system includes memory which stores, for each of a set of classes, a classifier model for assigning a class probability to a test sample from a target domain. The classifier model has been learned with training samples from the target domain and from at least one source domain. Each classifier model models the respective class as a mixture of components, the component mixture including a component for each source domain and a component for the target domain. Each component is a function of a distance between the test sample and a domain-specific class representation which is derived from the training samples of the respective domain that are labeled with the class, each of the components in the mixture being weighted by a respective mixture weight. Instructions, implemented by a processor, are provided for labeling the test sample based on the class probabilities assigned by the classifier models.
Abstract:
A system and method for classifying vehicles from laser scan data by receiving laser scan data corresponding to multiple vehicles from a laser scanner; extracting vehicle shapes corresponding to the multiple vehicles based on the laser scan data; aligning the vehicle shapes; and generating vehicle profiles based on the aligned vehicle shapes. The system and method can further include aligning the vehicle shapes using sequence kernels, such as global alignment kernels, and constraining the sequence kernels based on determined weights.
Abstract:
A system and method for dynamic zoning are provided. Travel demand data is received for a network which includes a set of points. The travel demand data includes values representing demand from each point to each of other point. Destination-distance values are computed which reflect the similarity between points in a respective pair, based on the travel demand data. For each pair of the points, a geo-distance value is generated which reflects the distance between locations of the points in the pair. An aggregated affinity matrix is formed by aggregating the computed geo-distance values and destination-distance values. The aggregated affinity matrix is used by a clustering algorithm to assign each of the points in the set to a respective one of a set of clusters. A representation of the clusters can be generated in which each of a set of zones encompasses the points assigned to its respective cluster.
Abstract:
A method and apparatus for classifying an image. In one example, the method may include receiving one or more images associated with a source domain and one or more images associated with a target domain, identifying one or more source domain features based on the one or more images associated with the source domain, identifying one or more target domain features based on the one or more images associated with the target domain, training a conditional maximum mean discrepancy (CMMD) engine based on a difference between the one or more source domain features and the one or more target domain features, applying the CMMD engine to the one or more images associated with the target domain to generate one or more labels for each unlabeled target image of the one or more images associated with the target domain and classifying each one of the one or more images in the target domain using the one or more labels.
Abstract:
A domain-adapted classification system and method are disclosed. The method includes mapping an input set of representations to generate an output set of representations, using a learned transformation. The input set of representations includes a set of target samples from a target domain. The input set also includes, for each of a plurality of source domains, a class representation for each of a plurality of classes. The class representations are representative of a respective set of source samples from the respective source domain labeled with a respective class. The output set of representations includes an adapted representation of each of the target samples and an adapted class representation for each of the classes for each of the source domains. A class label is predicted for at least one of the target samples based on the output set of representations and information based on the predicted class label is output.
Abstract:
Methods, systems, and processor-readable media for the stochastic optimization of public transport schedules. A real-world collection of transit instances can be derived from a transport system and fed as input to a two-stage stochastic program. A schedule offset can be relaxed in the two-stage stochastic program to allow the two-stage stochastic program to operate according to the real-world collection of transit instances. An optimized transport schedule can then be derived from the two-stage stochastic program for use by the transport system based on the schedule offset and the real-world collection of transit instances.
Abstract:
Methods and systems for interpretable user behavior profiling in off-street parking applications. To render user profiles easy to interpret by decision makers, the semi-automatic discovery and tagging of user profiles can be implemented. Transaction data from one or more (and geographically close) off-street parking installations can be implemented. An analysis of spatio-temporal behavioral patterns can be implemented based on representation of any parking episode by a set of heterogeneous features, the use of clustering methods for automatic pattern discovery, an assessment of obtained clusters, semi-automatic identification/tagging of space-temporal patterns, and a user-friendly interpretation of obtained patterns.
Abstract:
In camera-based object labeling, boost classifier ƒT(x)=Σr=1Mβrhr(x) is trained to classify an image represented by feature vector x using a target domain training set DT of labeled feature vectors representing images acquired by the same camera and a plurality of source domain training sets DS1, . . . , DSN acquired by other cameras. The training applies an adaptive boosting (AdaBoost) algorithm to generate base classifiers hr(x) and weights βr. The rth iteration of the AdaBoost algorithm trains candidate base classifiers hrk(x) each trained on a training set DT∪DSk, and selects hr(x) from previously trained candidate base classifiers. The target domain training set DT may be expanded based on a prior estimate of the labels distribution for the target domain. The object labeling system may be a vehicle identification system, a machine vision article inspection system, or so forth.