Abstract:
The technical solution under the present disclosure automatically analyzes conversations between users by receiving a training dataset having a text sequence including sentences of a conversation between the users; extracting feature(s) from the training dataset based on features; providing equation(s) for a plurality of tasks, the equation(s) being a mathematical function for calculating value of a parameter for each of the tasks based on the extracted feature; determining value of the parameter for tasks by processing the equation(s); assigning label(s) to each of the sentences based on the determined value of the parameter, a first label being selected from a plurality of first labels, and a second label being selected from a number of second labels; and storing and maintaining with the database a pre-defined value of the parameter, first labels, conversations, second labels, a test dataset, equation(s), and pre-defined features.
Abstract:
A method, non-transitory computer readable medium, and apparatus for extracting text from a social media document are disclosed. For example, the method indexes a plurality of social media documents into a plurality of snippets, receives a query including one or more keywords and a purpose, identifies one or more of the plurality of snippets that include the one or more keywords in an index, ranks the one or more of the plurality of snippets in accordance with the purpose and provides the one or more plurality of snippets that are ranked in accordance with the purpose.
Abstract:
A method, non-transitory computer readable medium, and apparatus for extracting text from a social media document are disclosed. For example, the method indexes a plurality of social media documents into a plurality of snippets, receives a query including one or more keywords and a purpose, identifies one or more of the plurality of snippets that include the one or more keywords in an index, ranks the one or more of the plurality of snippets in accordance with the purpose and provides the one or more plurality of snippets that are ranked in accordance with the purpose.
Abstract:
A method, non-transitory computer readable medium, and apparatus for recommending a topic-cohesive and interactive implicit community are disclosed. For example, the method receives a request for customer care, selects an implicit community identified from a plurality of individual users of a social media website based upon a relevance score related to a topic of the request for customer care and recommends the implicit community in response to the request for customer care.
Abstract:
Embodiments of a computer-implemented method for automatically analyzing a conversational sequence between multiple users are disclosed. The method includes receiving signals corresponding to a training dataset including multiple conversational sequences; extracting a feature from the training dataset based on predefined feature categories; formulating multiple tasks for being learned from the training dataset based on the extracted feature, each task related to a predefined label; and providing a model for each formulated task, the model including a set of parameters common to the tasks. The set includes an explicit parameter, which is explicitly shared with each of the formulated tasks. The method further includes optimizing a value of the explicit parameter to create an optimized model; creating a trained model for the formulated tasks using the optimized value of the explicit parameter; and assigning predefined labels for the formulated tasks to a live dataset based on the corresponding trained model.
Abstract:
A process discovery system that includes an offline system training module configured to cluster similar process log traces using Non-negative Matrix Factorization (NMF) with each cluster representing a process model, and learn a Conditional Random Field (CRF) model for each process model and an online system usage module configured to decode new incoming log traces and construct a process graph in which transitions are shown or hidden according to a tuning parameter.
Abstract:
A method, system, and computer program product for determining skills of an employee is disclosed. The method includes determining a first likelihood of at least one keyword from a plurality of keywords being relevant to a topic. The plurality of keywords is extractable from one or more publications associated with the employee, the one or more publications being accessible from a plurality of sources. The method further includes determining a second likelihood of the employee being associated with the topic for at least one source from the plurality of sources. A first set of keywords from the plurality of keywords is assigned to the employee based on the first likelihood and the second likelihood. The first set of keywords is indicative of the skills of the employee.