Abstract:
Communication is performed for a first communication device having a set of antenna elements. A quality-indication signal is received from a second communication device (e.g., a basestation). A complex weighting is calculated based on the quality-indication signal. A pre-transmission signal is modified based on the complex weighting to produce a set of modified-pre-transmission signals. Each modified pre-transmission signal from the set of modified-pre-transmission signals is uniquely associated with an antenna element from the set of antenna elements. The set of modified-pre-transmission signals is sent from the set of antenna elements to produce a transmitted signal. The complex weighting is associated with a total power of the transmitted power and at least one from a phase rotation and a power ratio associated with each antenna element from the set of antenna elements. For example, in CDMA based systems, a fast feedback from the basestation—the power control indication—can be used by a subscriber communication device for this transmission diversity method in such a way that provides the desired signal quality at the basestation, without necessarily responding to fading nulls by mobile unit power output increase, but rather, by manipulating the weights of the mobile transmitter antenna array. Thus, a significant reduction in average and peak mobile power level is achieved, enhancing network capacity, battery life, and radiation hazards.
Abstract:
A transmitter in an OFDM-MIMO wireless communication system uses multiple antennas to transmit each data stream. Before the coded binary bits are mapped into channel symbols, they are divided into two groups. One group is mapped to a channel symbol as in a conventional system. Another group of binary bits is used to generate a spatial mapping index. The spatial mapping index determines which antenna is to be used to transmit the channel symbol for each subcarrier. Effectively, information bits are jointly represented by a combination of a channel symbol and an antenna that transmits the channel symbol. Therefore, to achieve the same data rate, a smaller signal constellation is required. In addition, spatial diversity can be achieved which is similar to traditional switching diversity. The number of non-zero subcarriers is reduced by half on average, which results in a lower peak to average ratio than conventional OFDM systems.
Abstract:
Communication is performed for a first communication device having a set of antenna elements. A quality-indication signal is received from a second communication device. A complex weighting is calculated based on the quality-indication signal. A pre-transmission signal is modified based on the complex weighting to produce a set of modified-pre-transmission signals. Each modified pre-transmission signal from the set of modified-pre-transmission signals is uniquely associated with an antenna element from the set of antenna elements. The set of modified-pre-transmission signals is sent from the set of antenna elements to produce a transmitted signal.
Abstract:
An apparatus and a method for improving packet transmission and reducing latency in VoIP over WLAN using switched beam antennas having multiple directional antenna beams are disclosed. In an access point having a switched beam antenna, or other smart antenna system, the present invention extends the coverage area of an access point for authentication and association of a new WTRU, extends the access points coverage area during in session transmissions with a WTRU, and adjusts data rates. The method also controls Contention Period (CP)/Contention Free Period (CFP) timing amongst beams emanating from an access point having a switched beam antenna, or other smart antenna system. Fast diversity switching, frame level switching, lowered data rates, and scanning multiple directional antenna beams for the optimum transmission beam are disclosed to improve beam selection and packet transmission.
Abstract:
One or more quality indicators are established at a first communication device having antenna elements. The quality indicators indicate a quality of one or more communication links between the first communication device and one or more second communication devices. A modification is determined according to the quality indicators, where the modification describes at least one adjustment of one or more modulation features. A time boundary indicator indicating a boundary of a time period is received. At least some of a set of signals are modulated in accordance with the modification and in response to the time boundary indicator, where a signal is associated with an antenna element. The set of signals is sent from the antenna elements to yield a transmitted signal.
Abstract:
A wireless communication method and system for performing bit-interleaved coded modulation and iterative decoding. The system includes a transmitter and a receiver. The transmitter encodes incoming bits to generate coded bits, punctures the coded bits in accordance with a predetermined puncturing pattern to generate surviving channel bits and stolen bits and interleaves the surviving bits into interleaved surviving bits. The interleaved surviving bits are mapped to channel symbols and the stolen bits are interleaved to generate interleaved stolen bits. At least one of a plurality of antennas is selected to transmit the channel symbols based on the value of the interleaved stolen bits. The receiver receives the transmitted channel symbols, estimates a posteriori probability for both the channel symbols and the stolen bits, and retrieves information of the stolen bits by determining the selected antenna used to transmit the channel symbols.
Abstract:
A method and apparatus for selecting a beam combination of beam switched antennas in a multiple-input multiple-output (MIMO) wireless communication system including a first node and a second node. The first node sends a plurality of modulation and coding scheme (MCS) requests to the second node. Each of the plurality of MCS requests is sent using a particular beam combination. The second node receives the MCS requests and generates MCS feedback signals for each of the MCS requests. Each MCS feedback signal includes an MCS recommendation for the particular beam. The first node selects a beam combination for communicating with the second node based on the MCS recommendations.
Abstract:
A wireless communication system includes a transmitter comprising a serial-to-parallel converter for converting serial data bits to a parallel bit stream, a signal mapper coupled to the serial-to-parallel converter and an antenna selector coupled to the serial-to-parallel converter. The signal mapper receives as input a first group of bits from the parallel bit stream, and maps the first group of bits to a channel symbol. The antenna selector receives as input a second group of bits from the parallel bit stream. A transmit antenna array is coupled to the antenna selector and to the signal mapper. The transmit antenna array generates a plurality of transmit antenna patterns with one of the transmit antenna patterns being selected for transmitting the channel symbol based upon the second group of bits from the antenna selector.
Abstract:
A method and apparatus for precoding validation in wireless communications with reduced error probability is disclosed. Error probability is reduced by applying phase rotations to precoding matrices, dedicated pilot symbols, or both to maximize a minimum pairwise distance.
Abstract:
The present invention comprises a method of statistical feedback for Multiple In-Multiple Out (MIMO) transmit beamforming comprising combining a short term channel state information and long term statistics in deriving a precoding matrix. At least one measurable parameter is observed, and a forgetting factor is determined based upon the observed parameter.