摘要:
A method of forming comb electrodes using self alignment etching is provided. A method of forming a stationary comb electrode and a movable comb electrode in first and second silicon layers of a SOI (Silicon-on-Insulator) substrate, respectively, using etching. The method involves sequentially etching the first silicon layer, the insulating layer, and the second silicon layer using an alignment mark formed in the first silicon layer. According to the method, the stationary comb electrode and the movable comb electrode are self-aligned for etching by patterning the first silicon layer.
摘要:
A metal line structure of an optical scanner and a method of fabricating the same are provided. The metal line structure of the optical scanner includes: a glass substrate having a metal line region etched to a predetermined depth; a metal line formed in the metal line region; a diffusion barrier layer that is formed on the glass substrate and covers the metal line; and an optical scanner structure combined with the glass substrate.
摘要:
Provided are an optical scanner including a micro-mirror having an improved a driving angle by using a micro-electro-mechanical system (MEMS) technique and a laser image projector using the same are provided. The optical scanner includes: a substrate; a mirror unit suspended over the substrate and spaced apart from the substrate by a predetermined distance; a supporter situated on the substrate and supporting both ends of the mirror unit so that the mirror unit is suspended over the substrate; a supporting axis connected between both ends of the mirror unit and the supporter so that the mirror unit can be rotatably supported by the supporter; a plurality of movable comb electrodes vertically formed on both sides of the mirror unit; and a plurality of static comb electrodes vertically formed on the substrate in such a way that the static comb electrodes alternate with the movable comb electrodes, wherein the static comb electrode is a two-layer structured electrode.
摘要:
A double-sided etching method using an embedded alignment mark includes: preparing a substrate having first and second alignment marks embedded in an intermediate portion thereof; etching an upper portion of the substrate so as to expose the first alignment mark from a first surface of the substrate; etching the upper portion of the substrate using the exposed first alignment mark; etching a lower portion of the substrate so as to expose the second alignment mark from a second surface of the substrate; and etching the lower portion of the substrate using the exposed second alignment mark.
摘要:
A method of manufacturing a coil for a micro-actuator. The method of manufacturing a coil for a micro-actuator includes preparing a substrate, forming a plurality of trenches for forming a coil on the substrate, covering portions on the substrate with a masking layer except for the plurality of trenches, electroplating the plurality of trenches with a conductive material, and forming a passivation layer on the substrate. Consistent with the method, variations in sections of a coil can be reduced by minimizing bending and warping of a wafer, and therefore a driving current applied to a coil and power consumption can be reduced.
摘要:
Provided is a method of fabricating a metal pattern so that an insulation layer between a wafer and the metal pattern can be prevented from being damaged in a planarization procedure when the metal pattern having a trench structure is fabricated on the wafer. The method includes operations of forming a first insulation layer on a surface of the wafer; selectively etching the surface of the wafer and the first insulation layer so as to form a plurality of trenches; forming a second insulation layer on a bottom and side walls of the plurality of trenches by using a thermal oxidation method; filling a metal inside the plurality of trenches; and performing planarization by removing the metal deposited outside the plurality of trenches.
摘要:
A micro-electro mechanical system (MEMS) device and a method of forming comb electrodes of the MEMS device are provided. The method includes forming a plurality of parallel trenches at regular intervals in one side of a first silicon substrate so as to define alternating first and second regions at different heights on the one side of the first silicon substrate, oxidizing the first silicon substrate in order to form an oxide layer in the first and second regions having different heights, forming a polysilicon layer on the oxide layer to at least fill up the trenches so as to level the oxide layer having different heights, bonding a second silicon substrate directly to a top surface of the polysilicon layer, selectively etching the second silicon substrate and the polysilicon layer using a first mask so as to form upper comb electrodes vertically aligned with the first regions, selectively etching the first silicon substrate using a second mask so as to form lower comb electrodes vertically aligned with the second regions, and removing the oxide layer interposed between the upper comb electrodes and the lower comb electrodes.