摘要:
A piezoelectric Micro Electro Mechanical System (MEMS) switch includes a substrate, first and second fixed signal lines symmetrically formed in a spaced-apart relation to each other on the substrate to have a predetermined gap therebetween, a piezoelectric actuator disposed in alignment with the first and the second fixed signal lines in the predetermined gap, and having a first end supported on the substrate to allow the piezoelectric actuator to be movable up and down, and a movable signal line having a first end connected to one of the first and the second fixed signal lines, and a second end configured to be in contact with, or separate from the other of the first and second fixed signal lines, the movable signal line at least one side thereof being connected to an upper surface of the piezoelectric actuator.
摘要:
A MEMS (Micro Electro Mechanical Systems) switch actuated by electrostatic and piezoelectric forces, includes a substrate; a first contact point positioned in a predetermined first area on an upper surface of the substrate; a support layer suspended at a predetermined distance from the upper surface of the substrate; a second contact point formed on a lower surface of the support layer; a first actuator operative to move the support layer in a predetermined direction using an electrostatic force; and a second actuator operative to move the support layer in a predetermined direction using a piezoelectric force. The first actuator is used to turn on the MEMS switch. The second actuator can be used together with the first actuator to turn on the MEMS switch or can be separately used to turn off the MEMS switch. As a result, a stiction can be prevented from occurring between contact points.
摘要:
A Micro Electro Mechanical System (MEMS) switch includes a substrate, a fixed signal line formed on the substrate, a movable signal line spaced apart from one of an upper surface and a lower surface of the fixed signal line, and at least one piezoelectric actuator connected to a first end of the movable signal line so as to bring or separate the movable signal line in contact with or from the fixed signal line. The piezoelectric actuator includes a first electrode, a piezoelectric layer formed on the first electrode, a second electrode formed on the piezoelectric layer, and a connecting layer formed on the second electrode and connected with the movable signal line.
摘要:
A piezoelectric Micro Electro Mechanical System (MEMS) switch includes a substrate, first and second fixed signal lines symmetrically formed in a spaced-apart relation to each other on the substrate to have a predetermined gap therebetween, a piezoelectric actuator disposed in alignment with the first and the second fixed signal lines in the predetermined gap, and having a first end supported on the substrate to allow the piezoelectric actuator to be movable up and down, and a movable signal line having a first end connected to one of the first and the second fixed signal lines, and a second end configured to be in contact with, or separate from the other of the first and second fixed signal lines, the movable signal line at least one side thereof being connected to an upper surface of the piezoelectric actuator.
摘要:
A Micro Electro Mechanical System (MEMS) switch includes a substrate, a fixed signal line formed on the substrate, a movable signal line spaced apart from one of an upper surface and a lower surface of the fixed signal line, and at least one piezoelectric actuator connected to a first end of the movable signal line so as to bring or separate the movable signal line in contact with or from the fixed signal line. The piezoelectric actuator includes a first electrode, a piezoelectric layer formed on the first electrode, a second electrode formed on the piezoelectric layer, and a connecting layer formed on the second electrode and connected with the movable signal line.
摘要:
A MEMS switch includes a lower substrate having a signal line on an upper surface of the lower substrate; an upper substrate, having a cavity therein, disposed apart from the upper surface of the lower substrate by a distance, and having a membrane layer on a lower surface of the upper substrate; a bimetal layer formed in the cavity of the upper substrate on the membrane layer; a heating layer formed on a lower surface of the membrane layer; and a contact member formed on a lower surface of the heating layer. The contact member can come into contact with or separate from the signal line. A method for manufacturing the MEMS switch includes preparing the upper and lower substrates and combining them so that a surface having the signal line faces a surface having the contact member and the upper and lower substrates are disposed apart by a distance.
摘要:
An RF MEMS switch having asymmetrical spring rigidity. The RF MEMS switch has supporting members spaced apart in a certain interval on a substrate, a membrane being a motion member suspended by plural spring members extended on both sides of the membrane, and a bottom electrode being a contact surface on an upper surface of the substrate facing a bottom surface of the membrane, wherein the plural spring members placed on opposite sides of the membrane have asymmetrical rigidity, and a portion of the membrane on a side of stronger spring rigidity is first separated from the contact surface when the RF MEMS switch is turned off. The present invention has an advantage of easy separation of the switch from the contact surface, when the switch is turned off, due to the different rigidity of the springs located on the sides of the membrane.
摘要:
An RF MEMS switch having asymmetrical spring rigidity. The RF MEMS switch has supporting members spaced apart in a certain interval on a substrate, a membrane being a motion member suspended by plural spring members extended on both sides of the membrane, and a bottom electrode being a contact surface on an upper surface of the substrate facing a bottom surface of the membrane, wherein the plural spring members placed on opposite sides of the membrane have asymmetrical rigidity, and a portion of the membrane on a side of stronger spring rigidity is first separated from the contact surface when the RF MEMS switch is turned off. The present invention has an advantage of easy separation of the switch from the contact surface, when the switch is turned off, due to the different rigidity of the springs located on the sides of the membrane.
摘要:
An RF MEMS switch and a method for fabricating the same are disclosed, in which the RF MEMS device is down driven at a low voltage using a piezoelectric effect. The RF MEMS switch includes a substrate provided with RF signal lines and a cavity, a cantilever positioned on the cavity, having one end fixed to the substrate, and a contact pad connecting the RF signal lines with the cantilever in contact with the RF signal lines when the cantilever is down driven.
摘要:
An RF MEMS switch and a method for fabricating the same are disclosed, in which the RF MEMS device is down driven at a low voltage using a piezoelectric effect. The RF MEMS switch includes a substrate provided with RF signal lines and a cavity, a cantilever positioned on the cavity, having one end fixed to the substrate, and a contact pad connecting the RF signal lines with the cantilever in contact with the RF signal lines when the cantilever is down driven.