摘要:
Disclosed are solar cells and methods for making solar cells. Also disclosed are counter electrodes for solar cells including dye-sensitized and/or nanocrystal-sensitized solar cells. An example counter electrode for a solar cell may include a substrate, a microstructured template disposed on the substrate, and a layer of catalytic material disposed on the microstructured template.
摘要:
A three-dimensionally ordered macroporous sensor apparatus and method of forming the same. A direct opal film associated with a number of pores can be formed by vertical deposition of one or more nanospheres on a glass substrate. The thickness of the direct opal film can be controlled by concentration of the nanospheres. A mixture of a precursor/monomer of a sensing material and a complexing agent can be filled into the pores associated with the direct opal film, such that the mixture permeates the interstitial spaces between the pores. The nanospheres may then be removed in order to form a three dimensionally-ordered macroporous electrode with an inverse opal structure. Optionally, the sensing material can be coated on an inverse opal backbone structure formed from an external inactive material and utilizing a coating operation.
摘要:
CdSe-quantum dots are formed on a TiO2 patterned layer by chemical deposition from a solution of aminotriacetic acid/cadmium (NTA/Cd) and sodium selenosulfate. CdSe-quantum dots are useful as sensitizers for solar cells. The conversion efficiency of light of light power to electric power is enhanced by adjusting the ratio of potassium aminotriacetate to cadmium (NTA/Cd) as well as the chemical bath deposition (CBD) temperature and time.
摘要:
Solar cells with enhanced efficiency are disclosed. An example solar cell includes a first electrode (12). The first electrode (12) includes an electron conductor film (14). A quantum dot layer (16) is coupled to the electron conductor film (14). An electrolyte solution (18) is disposed adjacent to the quantum dot layer (16). A second electrode (20) is electrically coupled to one or more of the electrolyte solution (18) and the quantum dot layer (16). The second electrode (20) includes a sulfur-containing coating compound (24), and the electrolyte is a polysulfide electrolyte.
摘要:
Disclosed are solar cells and methods for making solar cells. Also disclosed are counter electrodes for solar cells including dye-sensitized and/or nanocrystal-sensitized solar cells. An example counter electrode for a solar cell may include a substrate, a microstructured template disposed on the substrate, and a layer of catalytic material disposed on the microstructured template.
摘要:
Photovoltaic cells and methods for manufacturing photovoltaic cells. An example photovoltaic cell may include an electron conductor, a hole conductor and an active region situated therebetween. The electron conductor may include a nanowire array and a sheath disposed over the nanowire array. The nanowire array may include a material having an electron mobility that is greater than the electron mobility of the sheath. The sheath may have a density of states that is greater than the density of states of the nanowire array.
摘要:
Quantum dot solar cells with enhanced efficiency are disclosed. An example solar cell includes an electron conductor layer, a quantum dot layer and a hole conductor layer. The electron conductor layer may include a plurality of nanoparticles having an average outer dimension that is greater than about 25 nanometers. The hole conductor layer may include an electrolytic salt, and/or a low surface tension solvent, as desired.
摘要:
Solar cells and methods for manufacturing solar cells are disclosed. An example solar cell may include a substrate, which in some cases may act as an electrode, a nano-pillar array coupled relative to the substrate, a self-assembled monolayer disposed on the nano-pillar array, an active layer provided on the self-assembled monolayer, and an electrode electrically coupled to the active layer. In some cases, the self-assembled monolayer may include alkanedithiol, and the active layer may include a photoactive polymer, but this is not required.
摘要:
A three-dimensionally ordered macroporous sensor apparatus and method of forming the same. A direct opal film associated with a number of pores can be formed by vertical deposition of one or more nanospheres on a glass substrate. The thickness of the direct opal film can be controlled by concentration of the nanospheres. A mixture of a precursor/monomer of a sensing material and a complexing agent can be filled into the pores associated with the direct opal film, such that the mixture permeates the interstitial spaces between the pores. The nanospheres may then be removed in order to form a three dimensionally-ordered macroporous electrode with an inverse opal structure. Optionally, the sensing material can be coated on an inverse opal backbone structure formed from an external inactive material and utilizing a coating operation.
摘要:
Solar cells and methods for manufacturing solar cells and/or components or layers thereof are disclosed. An example method for manufacturing a multi-bandgap quantum dot layer for use in a solar cell may include providing a first precursor compound, providing a second precursor compound, and combining a portion of the first precursor compound with a portion of the second precursor compound to form a multi-bandgap quantum dot layer that includes a plurality of quantum dots that differ in bandgap.