Abstract:
A pump system includes a pump unit an assembly frame that receives first and second pumps. A first and second pedal respectively couples to a first and second pump actuating portion. A rocker arrangement has a rocker that pivotally couples the first and second pedals, so a pushing movement of the first pedal in one direction causes a pulling movement of the second pedal in an opposite direction, and vice versa. The first and second pedals respond to a pushing force, respectively move the first and second pump actuating portions for pumping a fluid from the first and second pumps, and correspondingly move the first and second pump actuating portions for drawing the fluid to be pumped into the first and second pumps.
Abstract:
A pump includes a liquid housing having a liquid chamber with a piston/diaphragm assembly arranged therein that responds to a suction stroke and draws liquid into the liquid chamber, and responds to a pressure stroke and provides liquid from the liquid chamber; and a gas housing having a slide valve assembly separating first and second gas chambers. The slide valve assembly responds to a suction-to-pressure-force at the suction stroke conclusion, changes from a suction-to-pressure stroke state, provides gas from the first to second gas chamber through the slide valve assembly, and provides the pressure stroke so liquid passes from the liquid chamber; and responds to a pressure-to-suction-force at the pressure stroke conclusion, changes from the pressure-to-suction stroke state, provides gas from the second chamber through the slide valve assembly, and provides the suction stroke so liquid is drawn into the liquid chamber.
Abstract:
An integrated infuser/mixer pump system features a liquid inlet configured to receive a liquid drawn from a liquid source, a gas inlet configured to receive an inlet gas from a gas source, a pump and motor combination configured to received the liquid and provide pumped liquid, a gas/liquid mixture chamber configured to receive the pumped liquid and the inlet gas, and mix the liquid and the inlet gas into a gas-infused mixture, and a gas-infused mixture outlet configured to provide the gas-infused mixture; the gas inlet having a gas liquid mixing valve with a mixing orifice that has a mixing orifice size dimensioned to provide the inlet gas to the gas/liquid mixture chamber with an inlet gas volumetric flow rate in order to mix the pumped liquid and the inlet gas with a predetermined mixture ratio that depends on the mixing orifice size.
Abstract:
A fluid release valve includes valve housing (VH) coupled between a pump and an outlet pipe, VH chamber providing fluid from its inlet and outlet when the pump starts, and fluid release orifice (FRO) draining outlet pipe fluid flowing back into the VH when the pump stops; and check valve (CV) combination having a CV shuttle that moves towards/away from the inlet/outlet and an internal shuttle chamber (ISC), and having a CV that moves towards/away from the inlet/outlet within the ISC. The CV combination responds to a pumped fluid pressure when the pump's pumping and stops the fluid from flowing from the inlet around the CV shuttle and out the FRO. The CV combination responds to a fluid differential pressure (FDP) when the pump stops and allows the outlet pipe fluid to drain out the FRO until the FDP reaches an equilibrium.
Abstract:
A pumping system featuring a pump chamber configured with a central portion having a tangential outlet, and configured with a tubular coupling end portion having inwardly flexible rim portions on one side; and a mounting base, having a circular portion with an inner circumferential rim configured to receive and engage the inwardly flexible rim portions of the tubular coupling portion of the pump chamber so as to be rotationally coupled to the pumping chamber so that the pumping chamber may be rotated 360° in relation to the mounting base.
Abstract:
The design is the visual features of the centrifugal pump with sensor included shown in solid lines in the drawings, whether those features are features of one of shape, configuration, ornament or pattern or are a combination of any of these features. The stippled line portions of the drawings do not constitute a part of the design.Figure 1 is a top front perspective view of a centrifugal pump with sensor included;Figure 2 is a bottom back perspective view thereof;Figure 3 is a front view thereof;Figure 4 is a back view thereof;Figure 5 is a left side view thereof;Figure 6 is a right side view thereof;Figure 7 is a top view thereof;Figure 8 is a bottom view thereof;Figure 9 is a top front perspective view of a variant of the centrifugal pump with sensor included;Figure 10 is a bottom back perspective view of the centrifugal pump shown in Figure 9;Figure 11 is a front view of the centrifugal pump shown in Figure 9;Figure 12 is a back view of the centrifugal pump shown in Figure 9;Figure 13 is a left side view of the centrifugal pump shown in Figure 9;Figure 14 is a right side view of the centrifugal pump shown in Figure 9;Figure 15 is a top view of the centrifugal pump shown in Figure 9; andFigure 16 is a bottom view of the centrifugal pump shown in Figure 9.Drawings of the design are included.
Abstract:
A pump includes a molded housing configured with a rear endbell portion to receive an armature and bearing, an intermediate motor portion to receive a motor shell and magnets arranged around the armature, and a front endbell portion to receive a diaphragm assembly having a diaphragm support plate supporting a diaphragm, the rear endbell portion, the intermediate motor portion and the front endbell portion being configured as an integrated molded housing unit, the diaphragm having two circumferential diaphragm sealing surfaces. The pump also includes an upper housing configured to assemble and couple to the molded housing so as to form a circumferential fluid-tight sealing arrangement that is configured between the front endbell portion and the upper housing on only one end of the pump.
Abstract:
A pump, having a pump housing with an impeller arranged therein, features an anti-airlock valve assembly configured with a valve housing having a passageway configured with a vent hole to allow air to bleed out of the pump housing into the atmosphere so liquid can fill the pump housing, rise and engage the impeller in order to get the pump running; and a valve ball arranged in the passageway, the valve ball configured to rest against one part of the passageway so air can pass out of the vent hole, and also configured to be light or buoyant enough to respond to the liquid filling the pump housing, float upwardly and rest against another part of the passageway so as not to allow water to escape readily from the vent hole after the liquid rises to a sufficient level and substantially engages the impeller.
Abstract:
Apparatus, including a carbonation chamber, is provided that includes a mixing and metering member and a gas adjustment member. The mixing and metering member is configured to respond to a fluid, including water, and an adjustable amount of gas, including CO2, and may be configured to provide a mixture of the fluid and the gas. The gas adjustment member is configured to receive the gas, including from a gas inlet, and to provide the adjustable amount of gas to the mixing and metering member, based at least partly on an adjustable axial relationship between the mixing and metering member and the gas adjustment member in order to control a desired carbonation level of the mixture.