Abstract:
A permanent magnet, in particular a permanent magnet rotor for a machine, includes a first sleeve, a first cap and a second cap arranged to close off an inner opening of the first sleeve, and a permanent magnet material formed in the inner opening of the sleeve between the first cap and the second cap. The permanent magnet material is a compressed, non-bonded powder material including hard magnetic powder material, soft magnetic powder material, or a combination of hard and soft magnetic powder material. A method for manufacturing a permanent magnet rotor is also provided.
Abstract:
The heating circulation pump includes a pump housing with a pump impeller which is arranged therein and which is driven by an electric motor whose stator housing includes a flange, which connects to the pump housing. The heating circulation pump includes a terminal box housing for at least the electric connection of the motor. The terminal box housing engages over the stator housing from the side which is away from the pump, to into the region of the flange.
Abstract:
A filtration membrane (4) including a porous base layer (8) arranged adjacent to a filtration layer (6) having pores (10) extending through the filtration layer (6) is provided. The filtration layer is electrically conductive and at least one compound (24, 26) is attached on the filtration layer (6), thereby providing a protective surface layer (40). The at least one compound (24, 26) is configured to be at least partially cleaved off of the filtration layer (6) by a predefined cleave-off process.
Abstract:
A pump assembly includes a pump housing (2) with a fluid entry (6) and a fluid exit (8) for a fluid to be delivered. A stator housing (4) is connected to the pump housing (2). At least one cooling channel (12) is formed in a wall of the stator housing (4) and is connected to cooling channels (22, 24) in the pump housing (2), which are in connection with the fluid entry (6) and the fluid exit (8), so that the fluid flows through the at least one cooling channel on account of the pressure difference between the fluid entry (6) and the fluid exit (8).
Abstract:
A pump assembly with a motor housing (4) and with a terminal box (6) which includes at least one peripheral section (10) situated on the outer periphery of the motor housing (4). A cover (12) is provided, which in each case at least partly covers the motor housing (4) and the peripheral section (10) of the terminal box (6) on an axial end-side. The cover (12) is designed in a heat-conducting manner and at an inner side thereof is in contact with at least one electronic complement (14).
Abstract:
A system and a method for controlling the pressure of a fluid in a distribution network. The network includes at least one pump station having a number of pumps that are configured to pressurise the fluid from a supply line; means for determining at least one flow value (Q) of at least a part of the distribution network and a control unit for controlling the activity and/or speed of the pump(s) of the pump station according to a predefined pump curve defining the relationship between the pressure and the flow of the fluid pressurised by the pump station. The control unit is configured to change the pump curve automatically according to at least one determined flow value (Q).
Abstract:
A can of a drive motor is provided for a pump assembly, wherein the can (22) is manufactured at least partly of plastic (52). At least in a part of the can (22) the plastic (52) is reinforced by individual fibers (32) distributed in the plastic (52). The fibers (32) in at least one layer (35) of the can (32) are aligned in a defined manner in the peripheral direction with respect to the longitudinal axis (Z) of the can (22). A method for manufacturing such a can is also provided.
Abstract:
A flow-routing component of a pump is composed of at least two parts, a first part (2) of the component being manufactured by metal-powder injection molding, and a second part (4) of the component being manufactured from sheet metal. A pump assembly is also provided having such a flow-routing component.
Abstract:
A multi-stage centrifugal pump assembly includes at least two impellers (2, 6) and two impeller groups (4, 8) which are consecutive in a flow direction and each with at least one impeller (2, 6). A backflow channel (24) connects an exit side of the first impeller group (4) to an entry side thereof is located in a first impeller group (4) of the two impeller groups (4, 8).
Abstract:
A pressure exchanger for transmitting pressure energy from a first fluid flow to a second fluid flow includes a housing having an entry and an exit for the first fluid flow and an entry and an exit for the second fluid flow. A rotor arranged in the housing includes a multitude of channels which extend radially distanced to a rotation axis of the rotor. The rotor is arranged to the entries and exits in a manner such that the channels, on rotation of the rotor, in each case in an alternating manner, connect the entry for the first fluid flow to the exit for the second fluid flow, and the entry for the second fluid flow to the exit for the first fluid flow, and with a drive motor via which the rotor may be driven in rotation, and with setting means for changing the rotational speed of the rotor.