摘要:
A method of implementing vibration suppression at equipment residing at a local site is provided. The method comprises transmitting a prompt from a remote site to the local site, automatically sensing vibration response information from the equipment in response to the prompt, and transmitting the sensed vibration response information to the remote site. The method further comprises analyzing the sensed vibration response information at the remote site, and creating a vibration suppression algorithm based on the analyzed information. Another prompt is then transmitted from the remote site to the local site, and in response thereto, vibrations are induced within the equipment at the local site in accordance with the vibration suppression algorithm, and additional vibration response information from the equipment is sensed. The additional vibration response information is transmitted to, and analyzed at, the remote site, where a modified vibration suppression algorithm is created and transmitted to the local site for suppression of vibrations in the equipment.
摘要:
Kits and methods for building devices for analyzing or suppressing vibrations in equipment are provided. An electrical-mechanical transducer is configured to be placed in operative contact with the equipment. The transducer may be directly mounted to a base plate that is configured for being mounted to the equipment. A first device (e.g., a printed circuit board) carrying electronic componentry is configured for transmitting vibration drive signals to the electrical-mechanical transducer. A second device (e.g., a printed circuit board) carrying electronic componentry is configured for receiving vibration sensing signals from the electrical-mechanical transducer. The first and second devices can be interchangeably mounted within a housing that can be mounted to the base plate. The housing may comprise an aperture for receiving the electrical-mechanical transducer.
摘要:
A piezoelectric package comprises a piezoelectric plate having a first planar surface and a second planar surface that are electrically isolated from each other. The piezoelectric package further comprises a first electrically conductive layer electrically coupled to the first planar surface, and a second electrically conductive layer electrically coupled to the second planar surface. The piezoelectric package further comprises a first electrically insulative material (e.g., a rigid fiber composite material) encapsulating the piezoelectric plate and at least portions of the first and second electrically conductive layers.
摘要:
A piezoelectric package comprises a piezoelectric plate having a first planar surface and a second planar surface that are electrically isolated from each other. The piezoelectric package further comprises a first electrically conductive layer electrically coupled to the first planar surface, and a second electrically conductive layer electrically coupled to the second planar surface. The piezoelectric package further comprises a first electrically insulative material (e.g., a rigid fiber composite material) encapsulating the piezoelectric plate and at least portions of the first and second electrically conductive layers.
摘要:
Vibration suppression systems and methods for isolating payloads from vibrational forces are provided. A gas spring has a housing and a piston within the housing. The piston is mechanically isolated from the housing via a magneto-rheological (MR) fluid gasket. A payload is coupled to the piston, and net gas pressure force is applied to the piston by respectively exposing the first and second piston surfaces to first and second gas pressures. The piston is allowed to be displaced relative to the housing in response to a vibration applied to the housing. A magnetic field is selectively applied to the MR fluid gasket to alternately transform the properties of the MR fluid gasket between primarily viscous and primarily elastic.
摘要:
A vibration suppression system is provided. The system comprises an integrated master vibration actuating device configured for generating vibration suppression control signals, inducing vibrations into a structure in response to the control signals, and transmitting the control signals. The system further comprises one or more integrated slave vibration actuating devices configured for receiving the control signals from the master actuating device, and inducing vibrations into the structure in response to the received control signals. The system also comprises one or more integrated vibration sensing devices configured for sensing vibrations within the structure, generating vibration sensing signals in response to the sensed vibrations, and transmitting the vibration sensing signals to the master actuating device. The master actuating device may be configured for generating the control signals based on the vibration sensing signals.