Abstract:
A driving circuit for a display panel includes a common voltage generating circuit. The common voltage generating circuit is coupled to multiple common electrodes of the display panel and configured to provide multiple common voltages respectively to the common electrodes. During a frame period, the common voltage generating circuit respectively changes a voltage level of the common voltages at different time.
Abstract:
The charge pump is provided, which comprises a power supply circuit and a frequency control circuit. The power supply circuit comprises at least one electric energy storage element, and charges the at least one electric energy storage element for producing a supply voltage. The frequency control circuit is coupled to the at least one electric energy storage element, and outputs an operating signal to the power supply circuit. The frequency control circuit adjusts, an operating frequency of the operating signal in according to the electricity stored in the at least one electric energy storage element for controlling charging of the at least one electric energy storage element to increase the electricity of the at least one electric energy storage element.
Abstract:
A touch display device includes a display area and a non-display area and further includes a touch electrode layer; wherein a plurality of sensing electrodes is configured in the electrode layer; wherein each sensing electrode extends from the display area to the non-display area and is coupled to a driver chip via a connection structure; wherein the connection structure locates in the non-display area.
Abstract:
A power supply system includes a control module for generating a control signal; a first charging pump module, coupled to the control module, for generating an adjustment charging value according to the control signal, and outputting a charging voltage according to the adjustment charging value and a conduction voltage source; an amplifying module, coupled to the first charging pump module, for utilizing the charging voltage to generate an amplifying voltage; and a load module, coupled to the amplifying module, for processing a dynamic charging operation according to the amplifying voltage.
Abstract:
The present invention relates to a voltage boosting circuit capable of modulating duty cycle automatically, which comprises an inductor, a switching module, and a control circuit. The inductor is coupled to an input for receiving an input power. The switching module is coupled among the inductor, a ground, and an output for switching so that the input power can charge the inductor and produce charged energy, or for switching so that the charged energy of the inductor can discharge to the output and produce an output voltage. The control circuit outputs at least a control signal according to the charged energy and the output voltage for controlling the switching module to switch the inductor and provide the input power to the output, to switch the charged energy of the inductor to discharge to the output, or to switch the input power to charge the inductor.
Abstract:
A power supply module includes a source driver power supply circuit, a gate driver power supply circuit, a first capacitor group, a second capacitor group and a switch module. The source driver power supply circuit and the gate driver power supply circuit are utilized for driving a source driver and a gate driver of a display device, respectively. The first capacitor group includes at least one first storage capacitor for storing electric charges for driving source driving signals, and at least one first flying capacitor. The second capacitor group includes at least one second storage capacitor for storing electric charges for driving gate driving signals, and at least one second flying capacitor. The switch module is utilized for switching the first capacitor group to be used for the gate driver power supply circuit or switching the second capacitor group to be used for the source driver power supply circuit.
Abstract:
The present invention relates to a transmission interface. A display device comprises a driving circuit and a transmission interface. The transmission method of the transmission interface is that a first input is used for receiving a first data string; a second input is used for receiving a second data string; and the processing unit receives the first and second data strings. The first data string has a first identification bit and a plurality of first information bits. The second data string has a plurality of second information bits. The processing unit identifies either to write a plurality of parameters or a plurality of data to a storage circuit or to read the stored content from the storage circuit according to the first identification bit and the plurality of first information bits. The processing circuit further writes or reads the storage circuit according to the plurality of second information bits.
Abstract:
A driving circuit for a display includes a logic unit and a memory array coupled to the logic unit for turning on a plurality of memory cells corresponding to the word-line according to a word-line scanning signal to refresh the plurality of memory cells corresponding to the word-line; wherein the memory array has a first number of bit-lines and a second number of word-lines, wherein the driving circuit is used for driving a display panel having a third number of data-lines and a fourth number of scan-lines, and a product of the first number and the second number is equal to a product of the third number and the fourth number.
Abstract:
The present invention relates to a voltage boosting circuit capable of modulating duty cycle automatically, which comprises an inductor, a switching module, and a control circuit. The inductor is coupled to an input for receiving an input power. The switching module is coupled among the inductor, a ground, and an output for switching so that the input power can charge the inductor and produce charged energy, or for switching so that the charged energy of the inductor can discharge to the output and produce an output voltage. The control circuit outputs at least a control signal according to the charged energy and the output voltage for controlling the switching module to switch the inductor and provide the input power to the output, to switch the charged energy of the inductor to discharge to the output, or to switch the input power to charge the inductor.
Abstract:
The present invention discloses a power circuit having multiple stages of charge pumps. The power circuit comprises a first charge pump, a second charge pump, a voltage stabilizing capacitor, and an output capacitor. The first charge pump adjusts an input voltage and produces a first output voltage. The second charge pump adjusts the first output voltage, produces a second output voltage, and outputs the second output voltage for driving a loading. The voltage stabilizing capacitor is coupled between the first and second charge pumps and connected externally to the output of the first charge pump. The output capacitor is coupled to the second charge pump for providing the second output voltage. According to the present invention, the effect of supplying large transient currents to the loading can be achieved by connecting externally the voltage stabilizing capacitor to the output of the first charge pump.