摘要:
A heater controller for allocating heaters to cool a thermal chamber of a scientific instrument evaporates cryogenic liquid to produce a coolant gas. The gas is injected into a chamber to cool a sample disposal therein. The controller allocates low-capacity heaters in compliance with IEC guidelines to prevent problems generally associated with switching of large current loads, such as heaters. In one embodiment, heaters are activated so as to avoid jump discontinuities by effectively averaging the power delivered by the heaters. A second embodiment reduces complexity by essentially disregarding the problem of the jump discontinuity. A third embodiment groups the heaters according to a binary grouping scheme. The heater controller of the present invention can be used to control temperature according to a user supplied temperature profile.
摘要:
A dynamic and thermal mechanical analyzer incorporating a slide driven vertically in an air bearing guidance system with a large displacement capacity, very low friction and low mass. The position of the slide is measured by digitizing and interpolating two quadrature output signals generated by an optical encoder with very high spatial resolution and a long stroke. A force is applied to the slide using a linear permanent magnet motor with high force, high force linearity and low sensitivity to temperature variations. Position signals derived from the digitized and interpolated quadrature output signals are analyzed as a function of the applied force to calculate viscoelastic properties of a sample of material.
摘要:
The present invention is a modulated differential thermal analysis technique for determining the composition, phase, structure, identification, or other properties of a material that undergoes a transition as function of temperature or other driving variable. As applied to differential scanning calorimetric analysis (DSC), the preferred embodiment comprises (1) heating a sample of the material with a linear temperature ramp that is modulated with a sinusoidal heating rate oscillation; (2) simultaneously heating a reference at the same linear temperature ramp; (3) measuring the differential temperature of the sample and reference; and (4) deconvoluting the resultant heat flow signal into rapidly and non-rapidly reversible components.
摘要:
A planar interdigitated dielectric sensor useful for measuring the surface properties of a material is disclosed. The sensor is formed on an insulating substrate. Attached to the surface of the substrate is an excitation and response electrode disposed in an interdigitated pectinate configuration. Filling the space between the electrodes is an insulating material of known dielectric properties. The upper surface of the electrodes are generally coplanar with respect to the insulating material between the electrodes thus forming a flat upper surface on the sensor. This flat upper surface serves to eliminate air gaps between the sensor surface and sample when analyzing relatively viscous materials.
摘要:
A method for controlling a thermogravimetry experiment and for quantitatively determining kinetic constants for decomposition or volatilization reactions using periodic forcing (modulated) temperature functions. A temperature program having a linear part and a periodically varying part superimposed thereon is applied to a sample in a thermogravimetric analyzer. The resulting mass signal is deconvoluted, or separated, into one or more deconvoluted signals.
摘要:
The present invention relates to differential analytical techniques for determining the composition, phase, structure, identification or other properties of a material that undergoes a transition as function of a driving variable. As applied to differential scanning calorimetric analysis (DSC), the preferred embodiment comprises: (1) heating a sample of the material with a linear temperature ramp that is modulated with a sinusoidal heating rate oscillation; and (2) deconvoluting the resultant heat flow signal into rapidly reversible and non-rapidly reversible components.
摘要:
A differential thermal analysis sensor consisting of two low-impedance differential thermopiles. Each thermopile consists of a series of thermocouples joined in series, with the measuring junctions of the thermocouples arranged around a uniform temperature measuring region, and the thermoelectric reference junctions of the thermocouples arranged around a uniform temperature thermoelectric reference region. The differential thermal analysis sensor can be used for single-sample heat flux differential thermal analysis measurements, dual-sample heat flux differential thermal analysis measurements, or power compensation differential thermal analysis measurements.
摘要:
The present invention is a spatially-resolved differential analysis technique. A modulated differential analysis technique is applied using a proximal probe to obtain a spatially resolved characterization of a heterogeneous sample comprising at least two phases. As applied to spatially-resolved modulated differential scanning calorimetry, the present invention comprises a thermocouple probe that is scanned over the sample surface. The differential temperature of the area of the sample just beneath the thermocouple probe is obtained with respect to the temperature of a reference. The temperature of the sample and the reference is modulated above and below a transition temperature for one phase of the sample. The signal from the thermocouple probe is deconvoluted to obtain an image of the sample delineating the regions of the sample having that phase.
摘要:
A planar interdigitated dielectric sensor useful for measuring the surface properties of a material is disclosed. The sensor is formed on an insulating substrate. Attached to the surface of the substrate is an excitation electrode and a response electrode disposed in an interdigitated pectinate configuration and a resistance temperature device a (metallic strip). Filling the space between the electrodes and the metallic strip is an insulating material of known dielectric properties. The upper surface of the electrodes and the metallic strip are generally coplanar with respect to the insulating material between the electrodes thus forming a flat upper surface on the sensor. This flat upper surface serves to eliminate air gaps between the sensor surface and sample when analyzing relatively viscous materials.
摘要:
A modulated differential scanning calorimeter ("MDSC") wherein the temperature of the sample and/or the reference is modulated by modulating the characteristics of a gas in thermal contact with the sample and or a reference. In a first embodiment, the major heat flow path between the sample/reference and the furnace is the purge gas in the furnace chamber. The composition of the purge gas in the furnace chamber of the DSC cell is modulated by alternately purging the DSC cell with a high thermal conductivity gas (e.g., helium) and with a low thermal conductivity gas (e.g., nitrogen), thus modulating the flow of heat to and from the cell. In a second embodiment, the sample and reference are heated (or cooled) by a temperature-controlling gas flowing around the sample and reference holders. The gas is heated by being passed through a furnace before it flows around the sample and the reference. The flow-rate of the temperature-controlling gas is modulated, thus modulating the temperature of the sample and the reference. The third embodiment is similar to the second embodiment, but in the third embodiment, the temperature (not the flow-rate) of the temperature-controlling gas is modulated. The third embodiment preferably uses modulation furnaces which have a relatively low thermal mass, such that the sample/reference temperature can be modulated at relatively high modulation rates.