Abstract:
A semiconductor laser comprising a single mode laser cavity having a stack of semiconducting layers defining a transversal p-n junction is provided. A plurality of electrodes are coupled to corresponding sections of the laser cavity along the longitudinal light propagation direction, each corresponding section defining one of an amplification section or a modulation section. One or more DC sources are coupled to the electrodes associated with the amplification sections to forward-bias the p-n junction above transparency, so as to provide gain in the associated amplification sections. One or more modulation signal sources are coupled to the electrodes associated with the modulation sections, and apply a modulation signal across the p-n junction below transparency, the modulation signal providing a modulation of an output optical frequency of the semiconductor laser. Each modulation section is operated in photovoltaic mode.
Abstract:
Optical fiber filters and uses thereof are presented. In typical implementations, there is provided a FBG taking deleterious light out of a fiber core without reflecting it into the fiber core. It also allows the unhindered transmission of useful light at a wavelength outside of the spectral band covered by the deleterious light. The filter couples the incoming deleterious light to cladding modes propagating in the opposite direction without coupling the incoming useful light to core or cladding modes propagating in the opposite direction. The filter may for example be useful as a Raman or ASE filter in a laser cavity of other optical devices.
Abstract:
Optical fiber filters and uses thereof are presented. In typical implementations, there is provided a FBG taking deleterious light out of a fiber core without reflecting it into the fiber core. It also allows the unhindered transmission of useful light at a wavelength outside of the spectral band covered by the deleterious light. The filter couples the incoming deleterious light to cladding modes propagating in the opposite direction without coupling the incoming useful light to core or cladding modes propagating in the opposite direction. The filter may for example be useful as a Raman or ASE filter in a laser cavity of other optical devices.
Abstract:
A post-assembly wavelength-tuning method for an optical filter provided along an optical fiber mounted under tension in a packaging assembly is provided. The packaging assembly includes at least one packaging component mechanically coupled to the optical fiber and optically accessible from outside of the packaging assembly. The method includes a step of measuring a post-assembly spectral response of the optical filter and determining therefrom a spectral deviation with respect to a target spectral response. The method also includes a step of forming one or more laser-welded zones on the packaging component so as to cause a permanent deformation thereof. The permanent deformation induces a modification in length of the optical fiber, thereby changing the post-assembly spectral response of the optical filter to compensate for the measured spectral deviation.
Abstract:
Mach-Zehnder optical modulators and IQ modulators based on a series push-pull travelling wave electrode are provided. The modulator includes a conductive backplane providing an electrical signal path. One or more voltage control taps are electrically connected to the conductive backplane within an area underneath the travelling wave electrode and provide an equalizing DC control voltage to the conductive backplane. In other variants, a plurality of conductive backplane segments are provided, and at least one voltage control tap is electrically connected to each conductive backplane segment within an area underneath the travelling wave electrode and provides a DC control voltage to the corresponding conductive backplane segment.
Abstract:
A Mach-Zehnder optical modulator with a travelling wave electrode has a signal transmission line conductor (S) carrying an input electrical signal, and two ground transmission line conductors (G1 and G2) providing a return path for the electrical signal. The signal transmission line conductor is positioned between the first and second ground lines, and the first and second optical waveguide branches are positioned between the signal transmission line conductor and the first ground line. The modulator therefore has a GSG structure providing an asymmetrically-loaded configuration.
Abstract:
Methods to improve the optical properties of Bragg gratings are disclosed. A first method includes a post correction of the refractive index profile by applying an average index correction thereto. The average index correction is obtained through an analysis of the defects of the refractive index profile characterised through a reconstruction thereof. A second method includes a pre-correction to the refractive index profile by characterising the defects of a test grating, and again calculating an average index correction based thereon. Further gratings are then made using a corrected refractive index profile.
Abstract:
The present invention discloses practical and power efficient assemblies for applying a temperature gradient to a fiber Bragg grating. An application of such assemblies is, for example, the active tuning of the chromatic dispersion of the grating. The temperature gradient is produced in a heat conductive element, with which the FBG is in continuous thermal contact, by elements controlling the temperature of the ends of the heat conductive element, thereby applying the temperature gradient to the FBG. A first preferred embodiment includes a heat recirculation member allowing the recirculation of heat between the two ends of the heat conductive elongated element, thereby providing a rapid and dynamical tuning of the temperature gradient with a minimal heat loss. A second embodiment provides isolation from the surrounding environment in order to decouple the desired temperature gradient from ambient temperature fluctuations, thereby improving the control of the optical response of a fiber grating.
Abstract:
A method for manufacturing a FBG having improved performances and an annealing-trimming apparatus for making the same are provided. The trimming and the annealing steps are advantageously combined into a single process in order to efficiently fabricate complex FBG filters with improved performance. The method comprises the steps of UV-writing a FBG in an optical fiber prior to annealing-trimming characteristics of the FBG by performing the sub-steps of monitoring characteristic data of the FBG while generating a controlled complex temperature profile along the FBG with a heating means according to the characteristic data for providing an accurate controlled annealing process of the FBG, thereby providing an accurate trimming thereof.
Abstract:
A system and a method for recording interference fringes in a photosensitive medium. Two light beams are guided along different light paths to impinge on a photosensitive medium, where they interfere to produce the interference fringes. One of the beam is reflected along its path on a delay mirror forming a fixed angle null with respect to the plane of the photosensitive medium. Both the photosensitive medium and delay mirror are translated with respect to the light paths of the two beams, thereby recording the interference fringes all along the medium. The angle null is chosen so that the interference pattern is fixed relative to the photosensitive medium along its length.