Abstract:
A backwash arrangement for cleaning a cylindrical filter screen includes a cylindrical filter screen within which extends an axial central conduit. A number of radial branch conduits extend outwards from the central conduit towards the cylindrical filter screen, each provided with a spring-loaded nozzle arrangement. The spring-loaded nozzle arrangement is biased into contact with the cylindrical filter screen, and includes a nozzle opening for passing across the cylindrical filter screen, and a pair of wheels deployed on opposing sides of the nozzle opening for rolling engagement with the cylindrical filter screen.
Abstract:
A backwashing suction device, a fabric filtering apparatus using the same, and a process of removing foreign materials attached to filter cloths of the disc-shaped filter pieces are disclosed. The backwashing suction device is separated from the disc-shaped filter pieces, thereby preventing the filter cloths of the disc-shaped filter pieces from being pressed down for a long time by the backwashing suction device. This is to improve the filtering efficiency of the filter cloths and to prolong a service life of the filter cloths. Further, a backwashing suction device is configured to be separated from disc-shaped filter pieces using a buoyant force, thereby providing a simple structure and a smooth operation. This is to enable close contact with or separation from the disc-shaped filter pieces, and a fabric filtering apparatus using the same.
Abstract:
The oil side-flow cleaning device includes a heating unit (11) installed between the oil tank and the filter unit (10) so that, when the oil temperature is below a defined limit value, oil flows through the filter unit (10) in such a way as to bypass the filtering function and is heated; and so that, when the oil temperature is above the defined limit, oil flows through the filter unit (10) so as to be subjected to the oil filtering function. In addition or as an alternative, the oil side-flow cleaning device comprises a backflush unit including a backflush collecting tank (17) and a backflush nozzle (18), wherein, when the device is in backflush mode, oil flows through the filter medium (16) in a second, opposite direction as a function of the position of the backflush nozzle (18) relative to the filter medium (16).
Abstract:
A filter module according to the present invention comprises a housing having an inlet and an outlet, said housing enclosing a tubular, elongate filter element defining a longitudinal axis and a cleaning head connected by means of a conduit to a coaxially arranged and rotatably mounted pipe, said cleaning head being resiliently biased towards the internal surface of said tubular, elongate filter element. Moreover, said cleaning head has an opening of adjustable size facing said internal surface of said filter element and providing fluid communication be-tween the interior of said housing and the interior of said pipe. The filter module further comprises means for creating a pressure difference between the interior of said housing and the interior of said pipe so as to cause a fluid flow from the interior of said housing to the interior of said pipe as well as means for effecting a rotation of said pipe. Said filter module further comprises a spacer element rotatably supported on and releasably attached to said cleaning head, said spacer element defining the minimum spacing between the cleaning head and the internal surface of said filter element.
Abstract:
A filtering device has a filter element disposed between the inlet and the outlet of the device. The inlet surface of the filter element is prone to clogging by suspended particles, e.g. waste, carried with the incoming raw fluid. The invention provides a cleaning head for the filtering device, comprising a basis and a nozzle movably mounted thereon. The cleaning head basis is mounted on a driving mechanism so that the nozzle can scan the inlet surface parallel thereto, and can clean the inlet surface by means of a backwash flow passing through the filter element into the nozzle under a cleaning pressure differential created by connecting the nozzle to a low-pressure outlet. The nozzle maintains, during scanning, permanent contact with the inlet surface so that lateral flow directly into the nozzle is essentially prevented despite variations of distance between the cleaning head basis and the inlet surface during the scanning.
Abstract:
A filter for filtering solid particles from liquids, especially for use in steam condensers and heat exchanger in thermal and nuclear power plants, said filter comprising a housing (4), a screen basket (2) located within said housing (4), a debris discharge pipe (1) for discharging accumulated and captured debris; a debris extractor arm (3) with a curvature towards the screen extending outwards at a predetermined radius with respective vertical plane, the said debris extractor arm (3) being rotatably driven over the entire length of the screen to create a low pressure between the debris extractor arm (3) and the screen (4) for complete extraction of debris and conveying to said debris discharge pipe (1).
Abstract:
A self-cleaning mechanical filter comprises a mechanism for simultaneously cleaning the internal surface and the external surface of a filter element. The filter is provided with structure for performing suction scanning of solid materials accumulated on the internal surface of the filter element, and structure which can be operated in synchronization with the suction scanning structure for backwashing the external surface of the filter element during a self-cleaning process.
Abstract:
A filter assembly for an aquarium has a self-cleaning filter. A fine mesh filter screen is disposed between an inlet and an outlet for filtering solid matter from the water that is pumped from the aquarium, through the filter, and back to the aquarium. When the filter screen is sufficiently loaded, or according to a set schedule, the solid matter is suctioned off the filter screen with a vacuum assembly. For that purpose, the water flow is first diverted, the filter screen is rotated, and the vacuum assembly is turned on. After the screen has been vacuumed, the vacuum assembly is once more turned off and the water flow is redirected to pass through the filter screen.
Abstract:
A backwashable fluid filter formed with a filter element which is disposed so that it can be rotated about its axis inside the filter housing by a drive mechanism and through which a radial flow passes. A backwashing device is provided which includes a dirt removal channel which extends parallel to the axis of the filter element. When the filter element is backwashed, clean fluid flows back through the filter element, removes dirt particles adhering to the filter element and carries them into the dirt removal channel. In order to pre-clean the filter element, a resiliently mounted stripping device is arranged in front of the backwashing device to remove coarse dirt from the surface of the filter element before it reaches the backwashing device. The filter element is provided with slit-like openings, each of which has a substantially U-shaped configuration and defines a resilient tongue. During backwashing, these resilient tongues have the advantage that they can move out of their normal positions to expand the width of the slit-like openings and facilitate effective cleaning of filter element.
Abstract:
A backwash strainer including a body, a strainer element having an inlet side contained in the body, and a space defined between the body and the strainer element. The body includes an inlet to the strainer element and an outlet from the annular space. A nozzle for directing cleaning fluid against the inlet side of the strainer element for dislodging particulate matter from the inlet side of the strainer element mounts to the body. A backwash arm for collecting the cleaning fluid and dislodging particulate matter mounts to the body. The backwash arm is positioned adjacent to and is in close proximity to the inlet side of the strainer element and the nozzle. The backwash arm has an axially extending slot defined by two spaced members having ends positioned adjacent to the nozzle. The backwash arm and the nozzle together may be moveable about a central axis relative to the strainer element.