Abstract:
A flow imaging and monitoring system for synchronized management of wide area drainage that includes an interposer for supporting monitoring and management equipment in a manhole, a module for illuminating water flowing in pipes at the base of the manhole, a module for monitoring responses to reflected light, a sealed and rechargeable battery pack, and a data analysis and management system to interpret data streams in real time. The interposer can be adjusted to fit the diameter of the manhole and can be adjusted to be placed under the manhole cover. The module for illuminating the flowing water can be adjusted to generate various frequencies. The support structures for the modules can be adjusted for varying pitch, roll and yaw with respect to the manhole. The data analysis and management system is supported by cloud computing.
Abstract:
A flow imaging and monitoring system for synchronized management of wide area drainage that includes an interposer for supporting monitoring and management equipment in a manhole, a module for illuminating water flowing in pipes at the base of the manhole, a module for monitoring responses to reflected light, a sealed and rechargeable battery pack, and a data analysis and management system to interpret data streams in real time. The interposer can be adjusted to fit the diameter of the manhole and can be adjusted to be placed under the manhole cover. The module for illuminating the flowing water can be adjusted to generate various frequencies. The support structures for the modules can be adjusted for varying pitch, roll and yaw with respect to the manhole. The data analysis and management system is supported by cloud computing.
Abstract:
A flow imaging and monitoring system for synchronized management of wide area drainage that includes an interposer for supporting monitoring and management equipment in a manhole, a module for illuminating water flowing in pipes at the base of the manhole, a module for monitoring responses to reflected light, a sealed and rechargeable battery pack, and a data analysis and management system to interpret data streams in real time. The interposer can be adjusted to fit the diameter of the manhole and can be adjusted to be placed under the manhole cover. The module for illuminating the flowing water can be adjusted to generate various frequencies. The support structures for the modules can be adjusted for varying pitch, roll and yaw with respect to the manhole. The data analysis and management system is supported by cloud computing.
Abstract:
A flow imaging and monitoring system for synchronized management of wide area drainage that includes an interposer for supporting monitoring and management equipment in a manhole, a module for illuminating water flowing in pipes at the base of the manhole, a module for monitoring responses to reflected light, a sealed and rechargeable battery pack, and a data analysis and management system to interpret data streams in real time. The interposer can be adjusted to fit the diameter of the manhole and can be adjusted to be placed under the manhole cover. The module for illuminating the flowing water can be adjusted to generate various frequencies. The support structures for the modules can be adjusted for varying pitch, roll and yaw with respect to the manhole. The data analysis and management system is supported by cloud computing.
Abstract:
A method of reducing rainwater and/or groundwater inflow and infiltration into a wastewater treatment collection grid. The method preferably involves the steps of (a) dividing the grid into a plurality of major subsystems, (b) determining flow depth levels in each major subsystem under dry and wet conditions, (c) using these wet weather and dry weather flow depth measurements to determine a volume flow ratio for wet versus dry conditions, (d) using these flow ratios to identify the particular major subsystem(s) in which the greatest amount of inflow or infiltration is occurring, and then (e) further dividing the highest ranking major subsystem(s) into smaller subsystems in which the same dry and wet weather level measurement and ranking analysis is preferably conducted to further isolate problem locations for surveillance, maintenance, and/or repair.
Abstract:
There is provided a system of measuring a time of fluid traversal of an infrastructure, the system comprising a processing circuitry configured to: receive one or more first fluid characteristics associated with the fluid traversing a first infrastructure location at a first timestamp; identify a first fluid characteristic signal from the first fluid characteristics, receive one or more second fluid characteristics associated with the fluid traversing a second infrastructure location at a second timestamp; identify a second fluid characteristic signal from the second fluid characteristics; and responsive to correlation of the second fluid characteristic signal with the first fluid characteristic signal: calculate a time of traversal, in accordance with the first timestamp, the second timestamp, and a distance between the first infrastructure location and the second infrastructure location.
Abstract:
Fluid stream management systems and methods relating thereto are described. The fluid management system includes: (1) one or more storage chambers; (2) two or more flow condition attribute measuring devices configured to measures certain flow condition attribute values; (3) one or more flow controllers that are communicatively coupled to receive the flow condition attribute values and use them to establish certain cost functions; and (4) one or more flow-modifying devices, each of which is coupled to at least one of the flow controllers, and based upon instruction received from at least one of the flow controllers, the flow-modifying device is capable of modifying flow of fluid through one or more of the flow-modifying devices to minimize a difference between the established cost functions.
Abstract:
Appurtenances added to a pipe mitigate the effects of upstream valves, sluice gates or pipe elbows to condition the pipe flow for accurate flow rate detection by a reverse propeller meter. Further appurtenances allow the reverse propeller meter to be used in extreme debris situations such as weeds, vines and moss present in many canal systems. The system provides an electronic signal that indicates flow rate and accumulated flow volume, or the signal can be transmit to a central headquarters for remote gate control or canal automation.
Abstract:
A flow imaging and monitoring system for synchronized management of wide area drainage that includes an interposer for supporting monitoring and management equipment in a manhole, a module for illuminating water flowing in pipes at the base of the manhole, a module for monitoring responses to reflected light, a sealed and rechargeable battery pack, and a data analysis and management system to interpret data streams in real time. The interposer can be adjusted to fit the diameter of the manhole and can be adjusted to be placed under the manhole cover. The module for illuminating the flowing water can be adjusted to generate various frequencies. The support structures for the modules can be adjusted for varying pitch, roll and yaw with respect to the manhole. The data analysis and management system is supported by cloud computing.
Abstract:
Appurtenances added to a pipe mitigate the effects of upstream valves, sluice gates or pipe elbows to condition the pipe flow for accurate flow rate detection by a reverse propeller meter. Further appurtenances allow the reverse propeller meter to be used in extreme debris situations such as weeds, vines and moss present in many canal systems. The system provides an electronic signal that indicates flow rate and accumulated flow volume, or the signal can be transmit to a central headquarters for remote gate control or canal automation.