摘要:
A gas transfer system and method for dissolving at least one gas into a liquid. The system includes a gas transfer vessel also known as a reactor. A liquid inlet feed is connected to the reactor for transferring the liquid into the reactor. A gas inlet is connected to the reactor for feeding the gas into the reactor. An outlet is connected to the reactor for transferring the liquid with at least some of the gas therein away from the reactor. The system also includes a feed pump connected to the inlet feed to pressurize the contents of the inlet feed and the reactor, and a regenerative turbine connected to the feed pump and to the outlet. The various embodiments of the gas transfer system use pressurization in the gas transfer vessel to enhance gas transfer therein, minimize the net energy consumption, and retain highly supersaturated dissolved gas in solution. Some embodiments further help to reduce effervescence loss. The method of the present invention utilizes the system of the present invention and operates the feed pump and regenerative turbine to accomplish these advantages.
摘要:
A heat engine includes a plurality of heating side expansion chambers and cooling side expansion chambers, positioned on opposite sides of an axis, for providing rotation of an apparatus about its axis when the fluids inside the chambers expand and contract on the same side and plane of a rotational axis. This is accomplished by, shifting the weight of fluids off-balance, or a weight, when the fluid, expands and exerts a pressure on an elastic wall inside an expansion chamber and contracts and reduces pressure on an elastic wall inside an expansion chamber, or by moving an element or ring, through actuators, when fluids expand and contract in the expansion chambers. The engine further includes a heat source and a structure for supporting the expansion chambers and heat source, and providing direction of a desired motion. A method of operating a heat engine includes engaging a heat source, and heating and cooling a plurality of expansion chambers for expanding or contracting a fluid that shifts the weight of pistons to an off-balance position providing a rotational motion of the apparatus. Also, the heat engine structure is operated to provide reciprocating, rotating or linear direction from the rotational motion of the apparatus.
摘要:
The invention relates to a method and an apparatus for the conversion of low-grade heat into mechanical energy, in particular electricity. To this end a working medium is heated in a closed circulation system causing the working medium to expand. The expansion produces mechanical energy. The heat remaining in the working medium is abstracted by a cooling medium in counterflow, to be reutilized for the production of mechanical energy. This makes its possible to achieve a high degree of efficiently. Due to cooling the working medium contracts and this contributes to the achievement of a high degree of efficiency. The working medium is preferably a paraffine.
摘要:
This is a method and an apparatus for performing said method, for the conversion of thermal energy into mechanical or electrical energy by means of an exchange of temperature between two water sources having a temperature differential, and utilizing a compressible fluid to be alternately compressed and expanded by the use of the thermal differential, with the flow imparted to the compressible fluid utilized through an improved positive displacement rotary valve and a motor wherein the motor is operated by hydraulic cylinders alternately pressurized and depressurized and connected between a pair of canted discs.
摘要:
The disclosure relates to a turbine having a rotor rotatable on a generally horizontal axis; the rotor being emersed in liquid and being driven upward by rising gasses on an ascending portion of the rotor and also being driven by downward falling liquid within the descending portion of the rotor and the rotor being constructed in such a manner as to provide substantial liquid sealing between the rotor and arcuate housing seal structure and walls, thereby minimizing blow-by or detour of the gasses around the rotor; the housing in its lower portion having a gas inlet and the housing in its upper portion having a gas liquid condenser and the housing being provided with means for maintaining a constant liquid level therein above said rotor.
摘要:
Embodiments of the invention provide systems and methods for generating and delivering electricity and/or hot water for combined heat and power (CHP) using one or more fuels. In many embodiments, the system can be used to provide efficient electrical, heating and cooling utilities to a residential household or group of households. Embodiments of the system can be configured for specific heat flow, while minimizing losses and maximizing total system efficiency. Embodiments also provide for stackable energy generation modules allowing the system to be placed in or nearby a residence to provide power to the residence. Embodiments also provide a control system which can be configured to monitor household electrical usage and dynamically regulate the system to operate at maximum efficiency as well as sell power to an external grid.
摘要:
A cogeneration system for generating electricity and process steam. The system includes an internal combustion engine having a shaft and a cooling system comprising a cooling fluid adapted to circulate through the engine and to cool the engine under conditions of nucleate boiling in which at least 10 percent of the coolant exits the engine in a vapor phase. It includes a vapor separator adapted to separate the coolant that exits the engine into a vapor phase coolant and a liquid phase coolant. The engine shaft drives an electric generator to provide electric power. A hot vapor line directs hot vapor exiting the vapor separator to a hot vapor process load. A coolant circulation pump is provided to force the cooling fluid through the engine, and a hot water line is provided to return hot water exiting the vapor separator to the coolant circulation pump. In preferred embodiments the system further includes an excess steam condenser for to collecting and condensing excess steam not needed by the hot vapor load, a condensate return tank adapted to store condensate from the hot vapor load and the excess steam condenser, and a condensate return line adapted to return condensate to the coolant recirculation pump.
摘要:
The present invention provides a power device generating greater propelling force and finds that traditional power devices do not include all propelling forces based on the fundamental core propelling force source problem. External pressure is guided to the traditional power devices since the inner speed is higher the outer speed, power consumption for overcoming fluid resistance is high, and mutual contradiction results are obtained. The unique difference between the present invention and general common sense lies in opposite fluid pressure directions; inner fluid channels and outer fluid channels with higher flow speeds are formed to generate pressure differences which guides the fluid pressure to the outside and serve as propelling force, and thus the present invention creatively finds three propelling force sources, two lifting force or propelling force sources of helicopters or airplanes driven by propellers and two propelling force sources for sufficient burning of fuel in combustion chambers of engines.
摘要:
The present techniques are directed to a heat recovery system, such as a waste heat recovery system (WHRU) that receives and passes a vapor across a heat exchanger to transfer heat from the vapor to a heating medium in the heat exchanger. The vapor may be an exhaust gas from a source outside of the heat recovery system. The heat recovery system includes a collection system to deinventory the heating medium from the heat exchanger during abnormal operation of the heat recovery system.
摘要:
A heat-driven engine includes a thermally conductive path into the engine, from a heat source and a working medium of a thermostrictive material, having a first temperature of transformation, positioned adjacent to the thermally conductive path. Also, a heat pump of phase change material is positioned adjacent to the working medium and an actuator is controlled to apply stimulus to the heat pump, causing a phase change and an associated release of thermal energy, to drive the working medium above its low-to-high temperature of transformation and controlled to alternatingly remove the stimulus from the heat pump, causing the phase change to reverse, and an associated intake of thermal energy, to drive the working medium below its high-to-low temperature of transformation. Also, heat flow through the thermally conductive path maintains the working medium at a temperature range permitting the heat pump to drive the working medium temperature, in the manner noted.