Abstract:
A superadiabatic burner has a flame holder formed from a porous medium, a fuel inlet coupled to the flame holder, a fuel outlet coupled to the flame holder, a preheater comprising an inlet and an outlet coupled to the fuel inlet, and a radiating rod coupled to the porous medium. The porous medium comprises a first porous section and a second porous section. Methods of using the burner allow preheated air or other mixtures to be provided to the fuel inlet as part of a fuel air mixture for the burner.
Abstract:
Provided is a fan metal fiber gas burner in which a metal fiber pad is installed and gas is supplied through a blow pressure to be burn. The burner is capable of uniformly distributing gas to the entire pad so that the flame can be uniformly exploded from all portions of the pad and the noise problem can be solved. The burner includes a detachable metal fiber pad installed to a combustion part of a burner head, a supply pipe connected to a central portion of a bottom of the burner head, a blower to supply oxygen necessary to burn gas through the supply pipe, and an idle-type dispersing blade provided below the metal fiber pad in the burner head and having a guide plate to uniformly dispersing gas in all directions while being pure-rotated according to a gas supplying pressure, and a guide plate having a curved surface.
Abstract:
The steam methane reformer using a premixed metal fiber burner which has a short flame length as well as a high temperature to thereby provide a high efficiency and also reduce a size, and a hydrogen station having the same. The steam methane reformer using a high performing metal fiber burner comprises a reforming part (110a) in which a catalyst for steam-reforming hydrocarbon materials and producing hydrogen is disposed; a combustion part (120) which is provided with a premixed metal fiber burner (120a) for generating heat required for the steam reforming reaction of the reaction tubes (110a); a raw material supplying part (130) for supplying hydrocarbon materials to the reaction tube (110a); and a hydrogen discharging part (140) for discharging hydrogen produced through the steam reforming reaction by the catalyst of the reaction tube (110a).
Abstract:
A gas powered incineration toilet is disclosed with a burner of the premixed full air type. The burner (9) includes an outer air chamber (20) which is closed at a first end and has a first exit for combustion air at a second end and which is connected with a channel (17) for supply of air, an inner gas mixing chamber (21) of smaller diameter than the outer chamber (20), which has at least one opening (22) proximate a first end for supply of air and a second exit for combustion gases at a second end, as well as a nozzle (16) for supply of air, as there is provided at least one backfire prevention system (23, 24, 25) in the form of a perforated plate and/or screen at the second combustion gas exit.
Abstract:
The invention relates to a gas burner comprising a metal burner membrane having a base section (201), a closing section (203) and a transition region in between (202). The shape of the membrane is such that the smallest radius of curvature of the transition zone is smaller than the smallest radius of curvature of the base section. Furthermore the burner membrane uninterruptedly flows over from the base section through the transition region into the closing section. The advantages of such a gas burner are amongst others a large dynamic power range, an improved flame front and a low production cost.
Abstract:
A micro gas burner is provided that generates a stable, pre-mixed flame that produces little to no soot or unburned hydrocarbons. The gas burner includes a fuel inlet, nozzle, oxygenation chamber with at least one air inlet, a mixing chamber having a frustoconical inner wall, at least one permeable barrier and a flame holder. The gas burner thoroughly mixes fuel and entrained air to form a nearly stoichiometric mixture prior to combustion. The gas burner mixes the fuel and air so thoroughly that it requires a lower fuel flow rate than would otherwise be necessary to produce a stable, pre-mixed flame. The gas burner may include an optional flame tube with an optional exhaust port in which a flame is contained and sequestered from diffusing air.
Abstract:
A wire mesh burner plate for use in large, gas burners for large ovens is comprised of spaced-apart wire mesh plates. The spacing between the wire mesh plates defines an air/fuel mixture space. The fuel passes through the lower or first mesh, experiences a pressure drop, mixes with air and passes through a second wire mesh. The gas combusts after passing through the second wire mesh. The fine gauge of the mesh prevents combustion from flowing backwardly into the fuel/air mixture space. Several individual wire mesh burner plates can be flexibly attached to each other such that a very wide space can be covered. Thermal stresses are reduced by being distributed across multiple burners.
Abstract:
The invention relates to a gas burner comprising a metal burner membrane having a base section (201), a dosing section (203) and a transition region in between (202). The shape of the membrane is such that the smallest radius of curvature of the transition zone is smaller than the smallest radius of curvature of the base section. Furthermore the burner membrane uninterruptedly flows over from the base section through the transition region into the closing section. The advantages of such a gas bunner am amongst others a large dynamic power range, an improvadflame front and a low production cost.
Abstract:
A micro gas burner is provided that generates a stable, pre-mixed flame that produces little to no soot or unburned hydrocarbons. The gas burner includes a fuel inlet, nozzle, oxygenation chamber with at least one air inlet, a mixing chamber having a frustoconical inner wall, at least one permeable barrier and a flame holder. The gas burner thoroughly mixes fuel and entrained air to form a nearly stoichiometric mixture prior to combustion. The gas burner mixes the fuel and air so thoroughly that it requires a lower fuel flow rate than would otherwise be necessary to produce a stable, pre-mixed flame. The gas burner may include an optional flame tube in which a flame is contained and sequestered from diffusing air.