摘要:
The invention relates to a combined system for generating electrical energy consisting of a power plant and an air handling system. The power plant comprises a first gas expansion unit connected to a generator. The air handling system comprises an air compression unit, a heat exchange system, and a fluid tank. In a first operating mode, feed air is compressed in the air compression unit and cooled in the heat exchange system against a first and a second coolant. A storage fluid is generated and stored as cryogenic fluid in the fluid tank. In a second operating mode, cryogenic fluid is removed from the fluid tank, vaporized, or pseudo-vaporized, at superatmospheric pressure, and heated in the heat exchange system against the second and first coolants.
摘要:
The invention relates to cryogenic engineering, in particular to purifying krypton-xenon mixture and is usable in the chemical and oil-and-gas industries. The inventive method comprises purifying and separating the mixture in rectification columns, wherein coolant is removed and returned to a cooling cycle, additionally removing radionuclides from krypton and xenon fractions and from krypton and xenon production flows by means of filtration and/or adsorption and/or rectification and/or absorption and/or chemical and/or physicochemical methods in apparatuses for additional removing radionuclides. Balloons for reception of the separated products are certified with respect to radionuclides content and/or activity prior to and after the filling thereof. An installation for carrying out the method is also disclosed, allowing to additionally remove radionuclides from the separated products in such a way that the products can be used, for example, for medical purposes and to increase the cost efficiency of purification and separation processes.
摘要:
The invention relates to refining and separating a krypton-xenon concentrate. The inventive method consists in dividing said krypton-xenon concentrate into krypton and xenon fractions in a pre-separation column, in addition removing semi-volatile impurities from each fraction, obtaining production krypton and xenon from said refined fractions in krypton and xenon columns and in addition extracting krypton from stripping gas of the krypton column by the rectification thereof. Reflux is formed in condensers-evaporators of the rectification columns in such a way that the formation of a solid phase is excluded. The operation of the rectification columns is initiated by supplying krypton to a contacting space. The inventive device for carrying out said method is also disclosed. Said invention makes it possible to increase the economical efficiency of the production of pure krypton and xenon by means of the maximum extraction thereof from an initial mixture.
摘要:
A cryogenic distillation apparatus comprising a system of columns (9, 11) also includes at least one external source of a gas other than a column of the system and means for sending this pressurized gas to the first pump (17) in order to serve as barrier gas for a pump (17, 23, 25, 27) and/or at least one external source (20) of liquid other than a column of the system and means for vaporizing at least one portion of this liquid and for sending the vapour thus formed to the first pump in order to serve as barrier gas and/or means (3) for withdrawing a liquid from a column of the system and for vaporizing at least one portion thereof downstream of the first or of the second pump in order to deliver a barrier gas (21) for the first pump.
摘要:
A method and apparatus for generating nitrogen from the separation of air in a single column nitrogen generator. Nitrogen rich vapor is condensed to form reflux through the vaporization of an oxygen-rich liquid stream produced as column bottoms. The vaporized oxygen-rich stream is in part recompressed in a recycle compressor, cooled and reintroduced back into the column to increase nitrogen production. The vaporized oxygen-rich stream is also in part expanded with the performance of work. The work of expansion is applied to the compression. A supplemental refrigerant stream produced by a nitrogen liquefaction unit allows the nitrogen to be taken as a liquid and increases the amount of work of expansion able to be applied to the compression.
摘要:
A producing apparatus of highly pure nitrogen gas which is used in electronic industry for manufacturing silicon semiconductors.Conventional nitrogen gas producing apparatus of low temperature separation method and of PSA method are subjected to troubles frequently, the cost of the obtained product nitrogen gas is high, yet the purity is not very high.By the apparatus of this invention, the liquefied nitrogen storage means (15) is connected to the heat exchangers (13, 14) through the inlet channel (16), the compressed air reaching the heat exchangers (13, 14) through the air compressor (9) and the impurity removing means (12) is cooled down to ultra low temperature by using the evaporation heat of the liquefied nitrogen then is sent into the rectifying column (15), and the nitrogen is taken out in gas form by utilizing the difference in the boiling point and oxygen is left in liquid form.The obtained nitrogen gas is combined with the gassified liquid nitrogen from the liquefied nitrogen storage means (15) and made into product nitrogen gas.Highly pure nitrogen, therefore, can be produced at a low cost and with almost no trouble of the apparatus.
摘要:
In low-temperature air fractionation, feed air (8) is cooled in a main heat exchanger (9) and introduced into a distillation column system for nitrogen-oxygen separation (11, 43), which system has at least one single column (12). At least one nitrogen-enriched or oxygen-enriched product stream (15, 16, 17; 53; 51, 56, 57; 19, 60) is withdrawn from the distillation column system for nitrogen-oxygen separation and warmed in the main heat exchanger (9). A fluid from an external source is passed at least at times into a liquid tank (70). At least at times fluid (71) is withdrawn in the liquid state from the liquid tank (70), vaporized in the main heat exchanger (9) and is obtained as gaseous additional product (72, 73).