Abstract:
A system for measuring intensity distribution of light includes a carbon nanotube array and an imaging element. The carbon nanotube array is placed in an environment of inert gas or a vacuum environment. The carbon nanotube array absorbs photons of a light source and radiates radiation light. The imaging element is used to image the radiation light. The carbon nanotube array is between the light source and the imaging element.
Abstract:
A goniophotometer includes an arc reflector; a holder for positioning a light source at the center of the arc reflector; a stationary detector substantially disposed at the center of the arc reflector and aimed at an arc reflective surface of the reflector; a driving device for rotating the holder with respect to the reflector and the detector about an axis of the light source; and a computing unit configured to convert a detection result of the detector into a measurement value.
Abstract:
A photovoltaic (PV) generating system that includes a plurality of PV tracker units, each having: a PV panel with a plurality of PV generators connected to output electrical power and an actuator for positioning the PV panel. A multiple tracker control unit is in communication with the plurality of PV tracker units, the tracker control unit monitoring the output electrical power of the PV panels and controlling, in dependance on the monitored output electrical power, both: (i) power conversion of the output electrical power and (ii) the actuators of the PV tracker units, to optimize power output for the plurality of PV tracker units.
Abstract:
A goniophotometer includes an arc reflector; a holder for positioning a light source at the center of the arc reflector; a stationary detector substantially disposed at the center of the arc reflector and aimed at an arc reflective surface of the reflector; a driving device for rotating the holder with respect to the reflector and the detector about an axis of the light source; and a computing unit configured to convert a detection result of the detector into a measurement value.
Abstract:
This invention is related to a light measuring apparatus and a method of using the device. It is used to measure various photometric quantities of the light emanating from a distant source of light.
Abstract:
Systems and methods for simultaneous optical testing of a plurality of devices under test. These systems and methods may include the use of an optical probe assembly that includes a power supply structure that is configured to provide an electric current to a plurality of devices under test (DUTs) and an optical collection structure that is configured to simultaneously collect electromagnetic radiation that may be produced by the plurality of DUTs and to provide the collected electromagnetic radiation to one or more optical detection devices. The systems and methods also may include the use of the optical probe assembly in an optical probe system to evaluate one or more performance parameters of each of the plurality of DUTs.
Abstract:
The invention provides an apparatus for sampling and determining characteristics of a light source. The apparatus comprises a sensor system configured to sample the spatial and spectral radiation characteristics of the light source and a goniometer that is configured to desirably control and adjust the relative position between the sensor system and the light source. The goniometer is configured to position the sensor system relative to the light source using two or more degrees of freedom. The apparatus additionally includes a control system configured to control the operation of the sensor system and the sampling of the spatial and spectral radiation characteristics of the light source. The control system is further configured to control operation of the goniometer for the relative positioning of the sensor system and the light source.
Abstract:
A solar energy absorption plate with an angle adjusting assembly comprises a solar energy plate; a first light sensing element and a second light sensing element at two symmetrical opposite sides; a control unit connected to each of the first light sensing element and second light sensing element; an angle adjusting unit connected to the control unit; and the angle adjusting unit being interactive with the solar energy plate. The control unit calculates a brightness difference between a brightness of the first light sensing element and a brightness of the second light sensing element so as to drive the angle adjusting unit to cause that the first and second light sensing element in the solar energy plate have the same brightness and the solar energy plate facing to sun. Furthermore a third and a fourth light sensing elements can be used further.
Abstract:
Methods for calibrating a photocontrol device having at least one flexible mounting leg mounting the photosensor to a circuit board and being electrically coupled to activate a switching device and calibrated photocontrol devices are provided. A photocontrol device is positioned proximate a light source. An aperture is positioned between the photosensor and the light source and an angle between the at least one flexible mounting leg and the circuit board is adjusted to calibrate a sensitivity of the photocontrol device to light from the light source passing through the aperture.
Abstract:
Provided is an anti-glare film excellent in anti-glare properties and capable of suppressing reflected scattered light. The anti-glare film includes an anti-glare layer, the anti-glare film having an uneven surface, wherein for an amplitude spectrum of elevation of the uneven surface, when a sum of amplitudes corresponding to spatial frequencies of 0.005 μm−1, 0.010 μm−1, and 0.015 μm−1 is defined as AM1 and an amplitude at a spatial frequency of 0.300 μm−1 is defined as AM2, AM1 is 0.070 μm or more and 0.400 μm or less, AM2 is 0.0050 μm or more, and AM2