Abstract:
A method, presentation control arrangement and a computer program product enables a user of a process control system to obtain details of a process control object. Distances between a mobile terminal of the user and process control objects in an area around the mobile terminal are determined as well as the closest process control object to the mobile terminal, process data of this object is obtained and presented together with a representation of the object on a display of the mobile terminal, where the representation of the closest process control object is emphasized compared with the presentation of other process control objects and the amount of process data being presented is dependent on the distance between the mobile terminal and the process control object.
Abstract:
Systems and methods for collecting, analyzing, transmitting, and acting on information collected from instruments monitoring and controlling equipment used for natural gas well production collection and pipeline insertion platforms (skids). Said instruments may include handheld computing devices like the Apple iPhone, iPad, or other PDAs; said devices using short or long range, wired or wireless communication. The systems and methods reduce costs, errors, inefficiencies, and increase safety by giving the user simple GUI interfaces for data collection and for action items. The said handheld devices can guide the data collector to the skid location using GPS or other location based services, collect data via wired of wireless methods, guide the data collector through manual data input methods or safety action items, compare current readings to past history and evaluate current safety or out-of-tolerance conditions or entries, among other items.
Abstract:
A process control configuration and management system provides a plurality of function blocks representing a plurality of devices in relation to a spatial layout of a facility in which the process control system is implemented. The configuration and management system also provides process control information and process simulation information related to each of the plurality of devices in relation to the spatial layout of the facility. The configuration and management system may be implemented on a handheld device and it may include a geographic positioning system providing geographic positioning data related to the handheld device and various devices in relation to the spatial layout of the facility.
Abstract:
A process control configuration and management system provides a plurality of function blocks representing a plurality of devices in relation to a spatial layout of a facility in which the process control system is implemented. The configuration and management system also provides process control information and process simulation information related to each of the plurality of devices in relation to the spatial layout of the facility. The configuration and management system may be implemented on a handheld device and it may include a geographic positioning system providing geographic positioning data related to the handheld device and various devices in relation to the spatial layout of the facility.
Abstract:
The present invention includes systems and methods for a near field communication (NFC) center that stores NFC information for various NFC devices and products. The NFC information is supplied by the device or product itself or from the manufacturer of the device or product. A user is then able to obtain the NFC information through their user mobile device from the NFC center. With the NFC information, the user can manage one or more NFC devices in real time.
Abstract:
A system and method is disclosed for configuring a group of mobile field devices using a configuration device (an HMI) is provided. In particular, the HMI is programmed to configure identically programmed field devices that are arbitrarily arranged in an application-dependent formation by defining and providing configuration parameters to the devices via wired and/or wireless communication. In particular, the HMI assigns a unique identifier to respective robots as a function of the position of the robot within the formation or the layout of the environment. Accordingly each robot can be efficiently configured by the HMI to operate independently yet as a coordinated member of the group and without requiring the robots to be placed in specific positions during the initial deployment. This obviates the need for constant independent control commands for each robot by a central controller or providing a customized control program to each robot during deployment.
Abstract:
A motor drive system includes a motor drive processor, a motor drive memory component, a server, and a display that displays a machine readable code, wherein the motor drive forms a secure wireless connection with a smart device once the smart device has scanned the machine readable code.
Abstract:
A method for connecting a field device (1) to an operating unit (2), and a field device (1) for use therewith, via which a connection between a field device and an operating unit can be implemented when the field device is mounted at a location that is difficult to access is achieved in that a query signal is transmitted to the field device (1) by the operating unit (2) and that a response signal is generated by the field device (1) as a reaction to the query signal, in that the field device (1) generates a blinking display and/or a change in color of the display and/or an acoustic signal and/or a change in an acoustic signal.
Abstract:
An energy control network may include a number of load control devices, such as dimmer switches, multi-button selector switch, occupancy sensors, and remote controllers, among others. These load control devices may be configured for wireless communication. Other wireless devices, such as laptops, tablets, and “smart” cellular phones may be configured to communicate with the load control devices of the energy control network. The load control devices and the other wireless communication devices may also be configured for Near Field Communication (NFC). NFC may be used to provide a load control device with its initial default configuration and/or an application specific configuration. Also, NFC may be used to transfer a configuration from one load control device that may have become faulty, to a replacement load control device. And NFC may be used to provide and trigger commands that may cause a load control load device to operate in a predetermined manner.
Abstract:
A method and apparatus for managing a programmable component may be present. A location on an object may be identified using a programming unit based on a position of the programming unit with respect to the object. Programming information for the programmable component may be identified based on the location on the object. The programmable component may be programmed using the programming information for the programmable component.