Abstract:
A method for producing a multichannel plate containing a plurality of generally parallel channels for use in structures for amplifying or converting optical images or other two-dimensional signal patterns by secondary electron multiplication, which method includes:producing a positive mold of the plate, by the steps of: (i) providing a body having the external shape of the plate to be produced and made of a material whose ability to be removed from the body is altered by exposure to a selected radiation; (ii) irradiating the body with the selected radiation in a pattern corresponding to the plate to be produced and in a manner to render the portions of the body corresponding to the channels more easily removable than the remaining portions of the body; and (iii) removing the more easily removable portions of the body;forming a metal negative mold, by the steps of: (i) attaching the positive mold to a metal electrode; (ii) electrolytically depositing metal on the electrode and in the openings created in the positive mold by said step of removing more easily removable portions; and (iii) removing the positive mold from the deposited metal; andforming the multichannel plate from the negative mold.
Abstract:
The invention includes an electron tube such as an image intensifier which utilizes a channel-type electron multiplier. The multipler is made of a perforated glass plate made in a manner such that secondary emission may be produced at the interior surfaces of the holes through the plate. Primary electrons are introduced to the holes at one end and a much larger emission emanates from the other end. Conductive layers on each side of the plate have holes in registration with the plate holes. The conductive layers are maintained at potentials to accelerate electron flow through the holes. In accordance with the present invention, a third conductive layer is provided at the output side. When the third conductive layer is maintained negative, resolution is improved.
Abstract:
A first die having a relief pattern is employed to provide predetermined shape and relative positioning for a first plurality of metal strips. A second die is similarly employed for a second plurality of metal strips Without removing the metal strips from the dies, the strips, still in predetermined shape and position, are bonded to opposing surfaces of an insulating substrate. The bonding process includes bringing the dies, and hence, the metal strips, into contact with the opposing surfaces of the insulating substrate. The bonding process may include the application of heat, pressure, and an electrical field across the bonding interfaces, e.g., anodic bonding.
Abstract:
The invention herein described was made in the course of or under a contract or subcontract thereunder with the Department of the Army. An illustrative embodiment of the invention is directed to method and apparatus for manufacturing microchannel devices. Typically, individual glass tubes are suspended vertically in a furnace. A vacuum is drawn within the furnace so that the inner surfaces of the tubes, exposed to atmospheric pressure, will not collapse during heating and drawing. At temperature, the bundle is drawn in order to elongate and reduce the bundle cross section by a ratio of about 50 to 1. The elongated bundle is cut into lengths that are stacked together within a tube of glass that has a higher melting point than the glass in the drawn lengths. The channels are once more sealed and the adjacent hexagonal lengths are subjected to a secondary fusion process prior to slicing into thin discs. To prevent the inner lengths from cracking during cooling, the inner surface of the tube is treated with a fusion inhibiting compound (e.g., boron nitride).
Abstract:
THE METHOD OF PRODUCING AIR STABILIZED-EARTH METAL OXIDE EMISSION MATERIAL BY MEANS OF A TWO-STEP HEATING PROCESS OF MIXED ALKALINE-EARTH METAL CARBONATE, BY WHICH THE EUTECTIC MELTING STAGE OF THE CARBONATE-OXIDE MIXTURE IS AVOIDED. ALKALINE-EARTH METAL CARBONATE IS HEATED TO A TEMPERATURE WHICH IS BELOW THE EUTECTIC MELTING TEMPERATURE FOR ALKALINE-EARTH CARBONATE-OXIDE MIXTURES. THE HEATING IS CONTINUED UNTIL ALL OF THE ALKALINEEARTH METAL CARBONATE IS CONVERTED TO ALKALINE EARTH METAL OXIDE. THE ALKALINE-EARTH METAL OXIDE IS THEN HEATED FROM ABOUT 1300*C. TO ABOUT 1750*C. FOR A PREDETERMINED TIME TO RENDER THE OXIDE AIR STABLE.